

Leistungserklärung Leistungserklärung Nr.: 2873-CPR-401-7 / 01.21-DE

- 1. Eindeutiger Kenncode des Produkttyps: Toge Betonschraube TSM high performance 6-14
 - 2. Typen-, Chargen- oder Seriennummer zur Identifikation des Bauproduktes gemäß Artikel 11, Abs. 4):

Anhang A 2 Chargennummer: siehe Verpackung des Produkts

3. Vorgesehener Verwendungszweck/-e des Bauproduktes gemäß anwendbarer harmonisierter technischer Spezifikation:

Produkttyp	Betonschraube
Für die Verwendung in	gerissener und ungerissener Beton C 20/25 - C 50/60 (EN 206) enthaltene Größen: 6,8,10,12,14
Option / Kategorie	Option 1
	Seismisch: Kategorie C1 und C2
Belastung	statisch oder quasi-statisch
Werkstoff	galvanisch verzinkter Stahl und zinklamellenbeschichteter Stahl:
	Anwendung nur in trockenen Innenräumen
	nichtrostender Stahl
	Anwendung im Innen- und Außenbereich ohne besonders aggressive
	Bedingungen
	hochkorrosionsbeständiger Stahl
	Anwendung im Innen- und Außenbereich unter besonders aggressive
	Bedingungen
	enthaltene Größen: 6,8,10,12,14

- 4. Name, eingetragener Handelsname oder Marke und Kontaktanschrift des Herstellers gemäß Artikel 11: Toge Dübel GmbH & Co. KG, Illesheimer Strasse 10, 90431 Nürnberg
- 5. Gegebenfalls Name und Kontaktanschrift des Bevollmächtigten, der mit den Angaben gemäß Artikel 12, Abs.2 beauftragt ist: --
- 6. System oder Systeme zur Bewertung und Überprüfung der Leistungsbeständigkeit des Bauproduktes (gemäß Anhang V): **System 1**
- 7. Im Falle der Leistungserklärung, die ein Bauprodukt betrifft, das von einer harmonisierten Norm erfasst ist: --
- 8. Im Falle der Leistungserklärung, die ein Bauprodukt betrifft, für das eine Europäisch Technische Bewertung ausgestellt worden ist:

Deutsches Institut für Bautechnik, Berlin

hat folgendes ausgestellt:

ETA-15/0514

auf Grundlage von EAD 330232-00-0601

Die notifizierte Produktzertifizierungsstelle 2873-CPR hat nach dem System 1 vorgenommen

- i) Festlegung des Produkttyps anhand einer Typenprüfung (einschließlich Probenentnahme), einer Typbeschreibung, von Wertetabellen oder Unterlagen zur Produktbeschreibung;
- ii) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle.
- iii) laufende Überwachung, Bewertung und Evaluierung der werkseigenen Produktionskontrolle. **und hat folgendes ausgestellt:** Konformitätszertifikat 2873-CPR-401-7.

9. Erklärte Leistung:

Wesentliche Merkmale	Bemessungsverfahren	Leistung	Harmonisierte technische Spezifikation
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	EN 1992-4	Anhang B4, Anhang C1 und C2	
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	EN 1992-4	Anhang C1 und C2	EOTA TR 045 EAD 330232-00-0601
Verschiebungen und Dauerhaftigkeit	EN 1992-4	Anhang C7 und Anhang B1	EAD 330011-00-0601
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorien C1 und C2	EN 1992-4	Anhang C3, C4, C5 und C8	
Brandverhalten / Feuerwiderstand	EN 1992-4	Anhang C6	

Wenn gemäß den Artikeln 37 oder 38 die Spezifische Technische Dokumentation verwendet wurde, die Anforderungen, die das Produkt erfüllt: --

10. Die Leistung des Produktes entspricht den erklärten Leistungen im Kapitel 9.

Verantwortlich für die Erstellung der Leistungserklärung ist allein der Hersteller.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

(E

Waldemar Gunkel

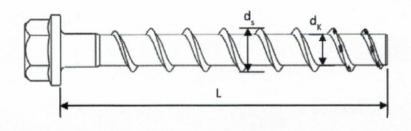
Dipl.-Wirtsch.-Ing. (FH), B.Eng.

Anwendungstechnik und Technsiche Dokumente

Nuernberg, 2021-03-12

Andreas Gerhard Geschäftsführer

Nuernberg, 2021-03-12


Tabelle 1: Werkstoffe

Teil	Bezeichnung	Werkstoff
Alle	TSM high performance	- Stahl EN 10263-4:2017 galvanisch verzinkt nach EN ISO 4042:2018 - zinklamellenbeschichtet nach EN ISO 10683:2018 (≥5μm)
	TSM high performance A4	1.4401; 1.4404; 1.4571; 1.4578
	TSM high performance HCR	1.4529

		nominelle ch	Devohalahavaa	
Teil	Bezeichnung	Streckgrenze f _{yk} [N/mm²]	Zugfestigkeit f _{uk} [N/mm²]	Bruchdehnung A₅ [%]
**************************************	TSM high performance			
Alle Ausführungen	TSM high performance A4	560	700	≤ 8
Australia diligeri	TSM high performance HCR			

Tabelle 2: Abmessungen

Schraubengröße			(5		8			10			12			14	
Nominelle		h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Einschraubtiefe		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Schraubenlänge	≤L	[mm]								500						
Kerndurchmesser	dĸ	[mm]	5	5,1 7,1			9,1				11,1			13,1		
Gewindeaußen- durchmesser	d _s	[mm]	7	,5		10,6			12,6	,		14,6	5		16,6	

Prägung:

TSM high performance

Schraubentyp: TSM Schraubendurchmesser: 10 100

Schraubenlänge:

TSM high performance A4

Schraubentyp: Schraubendurchmesser: 10

Schraubenlänge:

Werkstoff:

TSM

100

A4

TSM high performance HCR

Schraubentyp:

TSM

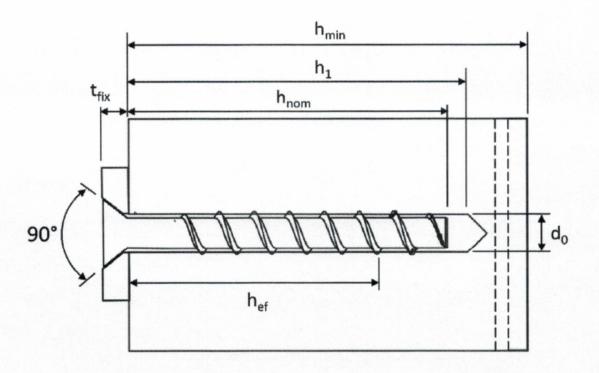
Schraubendurchmesser:

10 Schraubenlänge:

100

TOGE Betonschraube TSM high Performance

Produktbeschreibung


Werkstoffe, Abmessungen und Prägungen

Anhang A3

Tabelle 5: Minimale Bauteildicke, minimale Achs- und Randabstände

TSM Betonschraubengro	öße			5		8			10		
Namicalla Finankaukhiafe		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominelle Einschraubtiefe	2	[mm]	40	55	45	55	65	55	75	85	
Mindestbauteildicke	h _{min}	[mm]			8	30			90	102	
Minimaler Randabstand	Cmin	[mm]	4	0	40	5	0		50		
Minimaler Achsabstand	Smin	[mm]	4	10	40	5	0		50		

TSM Betonschraubengr	SM Betonschraubengröße					14			
Nominelle Einschraubtief		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominelle Emschraubten	.	[mm]	65	85	100	75	100	115	
Mindestbauteildicke	h _{min}	[mm]	80	101	120	87	119	138	
Minimaler Randabstand	Cmin	[mm]	5	0	70	50		70	
Minimaler Achsabstand	Smin	[mm]	50		70	50	70		

TOGE Betonschraube TSM high Performance	
Verwendungszweck	Anhang B4
Minimaler Bauteildicke, minimale Achs- und Randabstände	

TSM Betor	nschraubengröße	2		(5		8			10	
			h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}
Nominelle	Einschraubtiefe		[mm]	40	55	45	55	65	55	75	85
Stahlversa	Stahlversagen für Zug- und Quer			ruchun	g						
Charakterist		N _{Rk,s}	[kN]							45,0	
widerstand				1.	14,0 27,0					43,0	
	itsbeiwert Zug ischer Scher-	γMs,N	[-]					,5 			
widerstand	ischer Scher-	V ⁰ Rk,s	[kN]	7	,0	13	3,5	17,0	22,5	34	1,0
Teilsicherhe	itsbeiwert Scher	γ _{Ms,V}	[-]				1,	25			
Faktor für D		k ₇	[-]				0	,8	<u> </u>		
Charakterist Biegemome		M ⁰ Rk,s	[Nm]	10),9		26,0			56,0	
Herauszie	nen		***************************************	***************************************							
Charakter-	gerissen	N _{Rk,p}	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c 1)
istischer Zug widerstand in C20/25	ungerissen	N _{Rk,p}	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0
Erhöhungs	C25/30							12			
faktoren fü	r C30/3/	Ψς	[-]					22			
N _{Rk,p}	C40/50 C50/60							41 58			
Dotomiore	agen und Spalte	n: Roto	nauch	ruch au	f der la	ctahge			(Dryou	+)	
	erankerungstiefe	h _{ef}	[mm]	31	44	35	43	52	43	60	68
	gerissen	k _{cr}	[-]	31	1 77	33	<u></u>	,7	1 43	1 00	1 00
k-Faktor	ungerissen	kucr	[-]					1,0			
Beton-	Achsabstand	Scr,N	[mm]					hef			
versagen	Randabstand	C _{cr,N}	[mm]				1,5	x h _{ef}			
	Widerstand	N ⁰ _{Rk,sp}	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	16,0	19,0
Spalten	Achsabstand	S _{cr} ,Sp	[mm]	120	160	120	140	150	140	180	210
	Randabstand	C _{cr} ,Sp	[mm]	60	80	60	70	75	70	90	105
Faktor für	Pryoutversagen	k ₈	[-]			1	,0			2	,0
Montageb	eiwert	Yinst	[-]				1	,0			
Betonkan	tenbruch										
	ange in Beton	If = hef	[mm]	31	44	35	43	52	43	60	68
Nominelle	r durchmesser	d _{nom}	[mm] 6 8						10		
	prechend EN 1992	4:2018							1		
	E Betonschraub		high P	erforma	ance						
	stungsmerkma rakteristische Tr		alamik fir	- TCM	مع ماماما	-fa	G	0.40	A	nhang	C1

TSM Betons	schraubengröße				12			14	
			h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominelle Ei	nschraubtiefe		[mm]	65	85	100	75	100	115
Stahlversag	en für Zug- und Q	uerbeans	pruchun	g				***************************************	
Charakteristis					67.0			04.0	
Zugwiderstan	d	N _{Rk,s}	[kN]	[N] 67,0				94,0	and the second s
Teilsicherheit		γMs,N	[-]			1	,5		
Charakteristis Scherwiderst		V ⁰ _{Rk,s}	[kN]	33,5	42	2,0		56,0	
Teilsicherheit	sbeiwert Scher	γMs,V	[-]			1,	25		
Faktor für Du	ktilität	k ₇	[-]			0	,8		***************************************
Charakteristis	ches Biegemoment	M ⁰ _{Rk,s}	[Nm]		113,0			185,0	
Herauszieh	en								
Charakter-	gerissen	N _{Rk,p}	[kN]	12,0			······································	······································	
istischer Zug- widerstand in C20/25	ungerissen	N _{Rk,p}	[kN]	16,0	≥ N ⁰ _{Rk c} 1)				
	C25/30					1,	12		
Erhöhungs- faktoren für		Ψς	[-]		***************************************		22		
N _{Rk,p}	C40/50	c	[]				41		
	C50/60						58		
	gen und Spalten;	Betonaus	bruch au	1	T	T	T	out)	
Effektive Ver	ankerungstiefe	h _{ef}	[mm]	50	67	80	58	79	92
k-Faktor	gerissen	k _{cr}	[-]		***************************************		,7		
	ungerissen	k _{ucr}	[-]				1,0		
Beton-	Achsabstand	S _{cr,N}	[mm]				h _{ef}		
versagen	Randabstand	C _{Cr,N}	[mm]	12.0	105	1	x h _{ef}	240	20.0
Cnalton	Widerstand Achsabstand	N ⁰ _{Rk,sp}	[kN]	12,0 150	18,5 210	24,5	15,0 180	24,0	30,0
Spalten	Randabstand	S _{cr} ,Sp	[mm]	75	105	120	90	120	140
Faktor für D	youtversagen	C _{cr,Sp}	[-]	1,0		,0	1,0		,0
Montagebei		Yinst	[-]	1,0			,0		,0
Betonkante		1 / mst					,,,		
Effektive Lär		I _f = h _{ef}	[mm]	50	67	80	58	79	92
Nomineller	ibe ili peroli			30		1 00	1	<u></u>	1 32
Schraubend		d _{nom}	[mm]		12			14	
1) N ^U Rk,c entsp	rechend EN 1992-4:2	2018							
TOGE	Betonschraube	TSM high	Performa	ance					

TSM Betonschraubengröße			(5	8	1	0	12	14
Name and Financial and Asia for	hn	om	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{no}	om3
Nominelle Einschraubtiefe	[m	m]	40	55	65	55	85	100	115
Stahlversagen für Zug- und Que	rlast						***************************************		
Charakteristischer Zugwiderstand	N _{Rk,s,eq}	[kN]	14	1,0	27,0	45	,0	67,0	94,0
Teilsicherheitsbeiwert Zug	YMs,eq	[-]				1,	5		
Charakteristischer Scherwiderstand	$V_{Rk,s,eq}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4
Teilsicherheitsbeiwert Scher	γ _{Ms,eq}	[-]				1,2	25		
Mit verfüllten Ringspalt 1)	$\alpha_{\sf gap}$	[-]				1,	0		
Ohne verfüllten Ringspalt	$\alpha_{\sf gap}$	[-]	0,5						
Herausziehen									
Charakteristischer Zugwiderstand in gerissenem Beton C20/25	$N_{Rk,p,eq}$	[kN]	2,0	4,0	12,0	9,0		≥ N ⁰ Rk,c ²	2)
Betonversagen									
Effektive Verankerungstiefe	h _{ef}	[mm]	31	44	52	43	68	80	92
Randabstand	C _{cr,N}	[mm]				1,5 >	(h _{ef}		
Achsabstand	S _{cr} ,N	[mm]				3 x	h _{ef}		
Montagebeiwert	γinst	[-]				1,	0		
Betonausbruch auf der lastabg	ewandt	en Seit	e						
Faktor für Pryoutversagen	k ₈	[-]	1,0 2,0						
Betonkantenbruch									
Effektive Länge im Beton	I _f = h _{ef}	[mm]	31	44	52	43	68	80	92
Nomineller	d _{nom}	[mm]	6	6	8	10	10	12	14

 $^{^{1)}}$ Ringspaltverfüllung gemäß Anhang B7, Bild 5 $^{2)}$ $\rm N^0_{Rk,c}$ entsprechend EN 1992-4:2018

TOGE Betonschraube TSM high Performance	
Leistungsmerkmale	Anhang C3
Seismische Leistungskategorie C1	

Tabelle 9: Leistung für seismische Leistungskategorie C2 ¹⁾ – Werte **mit verfüllten** Ringspalt gemäß Anhang B7. Bild 5

TSM Betonschraubengröße			8	10	12	14	
Manata alla Pinashan aktisfa	h _{nom}	h _{nom3}					
Nominelle Einschraubtiefe		[mm]	65	85	100	115	
Stahlversagen für Zuglast							
Charakteristischer Zugwiderstand	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0	
Teilsicherheitsbeiwert Zug	YMs,eq	[-]		1,	.5		
Mit verfüllten Ringspalt	$\alpha_{\sf gap}$	[-]	1,0				
Herausziehen							
Charakteristischer Zugwiderstand in gerissenem Beton	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5	
Stahlversagen für Querlast	•	·				/	
Charakteristischer Scherwiderstand	$V_{Rk,s,eq}$	[kN]	9,9	18,5	31,6	40,7	
Teilsicherheitsbeiwert Scher	γMs,eq	[-]	1,25				
Mit verfüllten Ringspalt	$\alpha_{\sf gap}$	[-]		1,	,0		
Betonversagen							
Effektive Verankerungstiefe	h _{ef}	[mm]	52	68	80	92	
Randabstand	C _{cr,N}	[mm]		1,5	x h _{ef}		
Achsabstand	S _{cr,N}	[mm]		3 x	h _{ef}		
Montagebeiwert	Yinst	[-]		1	,0		
Betonausbruch auf der lastabgew	andten S	Seite					
Faktor für Pryoutversagen	k ₈	[-]	1,0		2,0		
Betonkantenbruch							
Effektive Länge im Beton	If = hef	[mm]	52	68	80	92	
Nomineller Schraubendurchmesser	d _{nom}	[mm]	8	10	12	14	

¹⁾ gilt nicht für A4 und HCR

TOGE Betonschraube TSM high Performance	
---	--

Leistungsmerkmale Seismische Leistungskategorie C2 – Werte mit verfüllten Ringspalt

Anhang C4

TSM Betonschraubengröße			8	10	12	14	
		h _{nom}		h _r	om3		
Nominelle Einschraubtiefe			65 85		100 115		
Stahlversagen für Zuglast (Ausfül	nrung Sec	hskantl	kopf)				
Charakteristischer Zugwiderstand	N _{Rk,s,eq}	[kN]	27,0	45,0	67,0	94,0	
Feilsicherheitsbeiwert Zug	γMs,eq	[-]		1	,5		
Herausziehen (Ausführung Sechs	kantkopf	F)					
Charakteristischer Zugwiderstand in gerissenem Beton	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5	
Stahlversagen für Querlast (Ausf	ührung S e	echskan	tkopf)				
Charakteristischer Scherwiderstand	V _{Rk,s,eq}	[kN]	10,3	21,9	24,4	23,3	
Teilsicherheitsbeiwert Scher	γMs,eq	[-]		1	,25		
Ohne verfüllten Ringspalt	$\alpha_{\sf gap}$	[-]		0),5		
Stahlversagen für Zuglast (Ausfü	hrung Ser	nkkopf)					
Charakteristischer Zugwiderstand	N _{Rk,s,eq}	[kN]	27,0	45,0	1		
Teilsicherheitsbeiwert Zug	γMs	[-]	1	.,5	keine Leistung bewei		
Herausziehen (Ausführung Senk	kopf)						
Charakteristischer Zugwiderstand in gerissenem Beton	N _{Rk,p,eq}	[kN]	2,4	5,4	keine Leistung bewerte		
Stahlversagen für Querlast (Ausf	ührung S	enkkopf	f)				
Charakteristischer Scherwiderstand	V _{Rk,s,eq}	[kN]	3,6	13,7			
Teilsicherheitsbeiwert Scher	γMs,eq	[-]	1	,25	keine Leistu	ing bewertet	
Ohne verfüllten Ringspalt	$\alpha_{\sf gap}$	[-]),5			
Betonversagen					······································		
Effektive Verankerungstiefe	h _{ef}	[mm]	52	68	80	92	
Randabstand	C _{cr,N}	[mm]		1,5	x h _{ef}		
Achsabstand	S _{cr,N}	[mm]		3 :	k h _{ef}		
Montagebeiwert	Yinst	[-]		1	1,0		
Betonausbruch auf der lastabgev	wandten !	Seite					
Faktor für Pryoutversagen	k ₈	[-]	1,0	2,0			
Betonkantenbruch							
Effektive Länge im Beton	I _f = h _{ef}	[mm]	52	68	80	92	
Nomineller Schraubendurchmesser	d _{nom}	[mm]	8	10	12	14	
1) gilt nicht für A4 und HCR							
TOGE Betonschraube TSM	high Perf	ormanc	е				

TSM Betonso	hraub	engröße		6	5	8		10		12		14					
			h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominelle Ein	schrau	btiefe	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Stahlversage	n für Z	ug- und Qu	erlast									l		,			L
	R30	N _{Rk,s,fi30}	[kN]	0,	,9		2,4			4,4			7,3			10,3	
	R60	N _{Rk,s,fi60}	[kN]	0,	,8		1,7			3,3			5,8			8,2	***************************************
	R90	N _{Rk,s,fi90}	[kN]	0,	,6		1,1			2,3			4,2			5,9	
	R120	N _{Rk,s,fi120}	[kN]	0,	,4		0,7			1,7			3,4			4,8	
0	R30	V _{Rk,s,fi30}	[kN]	0,	,9		2,4			4,4			7,3			10,3	
Charakterist-		V _{Rk,s,fi60}	[kN]	0,8		1,7		3,3		5,8		8,2					
Widerstand	R90	V _{Rk,s,fi90}	[kN]	0,	,6		1,1			2,3			4,2			5,9	
	R120	V _{Rk,s,fi120}	[kN]	0,			0,7			1,7	19		3,4			4,8	
	R30	M ⁰ Rk,s,fi30	[Nm]	0,	***************************************		2,4			5,9			12,3	3		20,4	*************
	R60	M ⁰ Rk,s,fi60	[Nm]		,6		1,8			4,5			9,7			15,9	
	R90	M ⁰ Rk,s,fi90	[Nm]	0,5			1,2		3,0			7,0		11,6			
	R120	M ⁰ Rk,s,fi120	[Nm]	0,3			0,9		2,3		5,7			9,4			
Herausziehe	n																
Charakterist- ischer	R30- 90	N _{Rk,p,fi}	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,6
Widerstand	R120	N _{Rk,p,fi}	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,1
Betonversage	en																
Charakterist- ischer	R30- 90	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14,0
Widerstand	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11,2
Randabstand	1																
R30 bis R120		C _{cr,fi}	[mm]							2	x he	f					
Mehrseitiger	Beansp	L	1	<u> </u>	anda	bsta	nd >	300	mm								
Achsabstand													***************************************				
R30 bis R120		S _{cr,fi}	[mm]							4	x he	6					
Betonausbru	ich auf	<u> </u>		1	n Se	ite					7, 1.6	£	***************************************				
R30 bis R120		k ₈	[-]				,0			2	,0	1,0	1 2	2,0	1,0	2	,0
Im nassen Ber	ton ist		1	efe i	m V			nit d	em :	1		1	1		1		
30 mm zu erh						51-0					5000						
TOGE	Betons	schraube T	SM hig	gh P	erfo	rmar	nce										
Leistu	ıngsm	erkmale												-	Anha	ang (6

TSM Betonso	chraubengröße	2		6		8			10			
Naminalla Cin	ll-+:-f-		h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{norr}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom}	
Nominelle Ein	ischraubtiere		[mm]	40	55	45	55	65	55	75	85	
	Zuglast	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	
Gerissener Beton	Manahiahuma	δνο	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	
Beton	Verschiebung	$\delta_{\text{N}^{\infty}}$	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
	Zuglast	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	
Ungerissener Beton	Varaahiahuna	δνο	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	
beton	Verschiebung	δ_{N^∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
TSM Betonso	chraubengröße	2			12	***************************************		***************************************	14			
	1 1		h _{nom}	h _{nom1}	h _{nom2}	hn	om3	h _{nom1}	h _{nom}	2 1	nom3	
Nominelle Ein	ischraubtiefe		[mm]	65	85		00	75	100	1	115	
6	Zuglast	N	[kN]	5,7	9,4	12,3		7,6	12,0)	15,1	
Gerissener Beton Verschiebung		δ_{NO}	[mm]	0,9	0,5	1	,0	0,5	0,8		0,7	
Detoil	Verschiebung	δ _{N∞}	[mm]	1,0	1,2	1	,2	0,9	1,2		1,0	
	7. Joseph	NI	[kN]	7,6	13,2	1	7,2	10,6	16,9	, I	24.2	
	Zuglast	N	[KIN]	7,0	15,2	1 4	1,2	10,0	10,5	7	21,2	
Ungerissener Beton		δ_{NO}	[mm]	1,0	1,1	1	,2	0,9	1,2		0,8	
	Verschiebung		 		†	1	***************************************				***************************************	
Beton		$\delta_{\text{N} \infty}$	[mm]	1,0	1,1 1,2	1	,2	0,9 0,9	1,2 1,2		0,8	
Beton abelle 13: Ver	Verschiebung	δ_{N0} $\delta_{N\infty}$	[mm]	1,0 1,0 her und	1,1 1,2	1	,2	0,9 0,9	1,2 1,2		0,8	
Beton abelle 13: Ver	Verschiebung rschiebungen chraubengröße	δ_{N0} $\delta_{N\infty}$	[mm]	1,0 1,0 her und	1,1 1,2 d quasi-	1	,2 ,2 :her C	0,9 0,9 Querbelas	1,2 1,2		0,8	
Beton abelle 13: Ver	Verschiebung rschiebungen chraubengröße nschraubtiefe	δ_{N0} $\delta_{N\infty}$	[mm] [mm] statisc h _{nom} [mm]	1,0 1,0 her und h _{nom1} 40	1,1 1,2 d quasi- 6 h _{nom2} 55	1 1 -statiso	,2 ,2 cher C 8 h _{non} 55	0,9 0,9 Querbelas h _{n2} h _{nom3}	1,2 1,2 tung	10 h _{nom2} 75	0,8 1,0	
Beton Shelle 13: Ver TSM Betonse Nominelle Eir Gerissener	Verschiebung rschiebungen chraubengröße	δ_{N0} $\delta_{N\infty}$ unter	[mm] [mm] statisc h _{nom} [mm] [kN]	1,0 1,0 her und h _{nom1} 40	1,1 1,2 d quasi- 5 h _{nom2} 55	1 1 -statiso	,2 ,2 cher C 8 h _{non} 55 8,6	0,9 0,9 Querbelas 12 h _{nom3} 65	1,2 1,2 tung	10 h _{nom2} 75 16,2	0,8 1,0	
Beton TSM Betonso Nominelle Eir Gerissener und	Verschiebung rschiebungen chraubengröße nschraubtiefe Scherlast	$\begin{array}{c} \delta_{N0} \\ \delta_{N\infty} \end{array}$ unter $\begin{array}{c} \delta_{N} \\ \delta_{V_0} \end{array}$	[mm] [mm] statisc h _{nom} [mm]	1,0 1,0 her und h _{nom1} 40	1,1 1,2 d quasi- 6 h _{nom2} 55	1 1 -statiso	,2 ,2 cher C 8 h _{non} 55	0,9 0,9 Querbelas 12 h _{nom3} 65	1,2 1,2 tung	10 h _{nom2} 75	0,8	
Beton Shelle 13: Ver TSM Betonse Nominelle Eir Gerissener	Verschiebung rschiebungen chraubengröße nschraubtiefe	δ_{N0} $\delta_{N\infty}$ unter	[mm] [mm] statisc h _{nom} [mm] [kN]	1,0 1,0 her und (h _{nom1} 40 3	1,1 1,2 d quasi- 5 h _{nom2} 55	1 1 -statiso	,2 ,2 cher C 8 h _{non} 55 8,6	0,9 0,9 Querbelas h ₁₂ h _{nom3} 65	1,2 1,2 tung	10 h _{nom2} 75 16,2	0,8 1,0	
Beton Shelle 13: Ver TSM Betons Nominelle Eir Gerissener und ungerissener Beton	Verschiebung rschiebungen chraubengröße nschraubtiefe Scherlast	$\begin{array}{c} \delta_{N0} \\ \delta_{N\infty} \end{array}$ unter $\begin{array}{c} V \\ \delta_{V0} \\ \delta_{V\infty} \end{array}$	[mm] [mm] statisc hnom [mm] [kN] [mm]	1,0 1,0 her und (h _{nom1} 40 3	1,1 1,2 d quasi- 5 h _{nom2} 55 ,3	statiso h _{nom1}	,2 ,2 cher C 8 h _{non} 55 8,6 2,7	0,9 0,9 Querbelas h ₁₂ h _{nom3} 65	1,2 1,2 tung	10 h _{nom2} 75 16,2 2,7 4,3	0,8 1,0	
Beton TSM Betonso Nominelle Eir Gerissener und ungerissener Beton TSM Betonso	Verschiebungen ichraubengrößenschraubtiefe Scherlast Verschiebung	$\begin{array}{c} \delta_{N0} \\ \delta_{N\infty} \end{array}$ unter $\begin{array}{c} V \\ \delta_{V0} \\ \delta_{V\infty} \end{array}$	[mm] [mm] statisc hnom [mm] [kN] [mm]	1,0 1,0 her und (h _{nom1} 40 3	1,1 1,2 d quasi- 5 h _{nom2} 55 ,3 55	-statisco	,2 ,2 cher C 8 h _{non} 55 8,6 2,7	0,9 0,9 Querbelas h ₁₂ h _{nom3} 65	1,2 1,2 tung h _{nom1} 55	10 h _{nom2} 75 16,2 2,7 4,3	0,8 1,0	
Beton TSM Betonso Nominelle Eir Gerissener und ungerissener Beton TSM Betonso	Verschiebung rschiebungen chraubengröße nschraubtiefe Scherlast Verschiebung	$\begin{array}{c} \delta_{N0} \\ \delta_{N\infty} \end{array}$ unter $\begin{array}{c} V \\ \delta_{V0} \\ \delta_{V\infty} \end{array}$	[mm] [mm] statisc hnom [mm] [kN] [mm] [mm]	1,0 1,0 her und h _{nom1} 40 3 1,	1,1 1,2 d quasi- 5 h _{nom2} 55 ,3 55	h _{nom1} 45	,2 ,2 cher C 8 h _{non} 55 8,6 2,7 4,1	0,9 0,9 Querbelas 12 h _{nom3} 65	1,2 1,2 tung h _{nom1} 55	10 h _{nom2} 75 16,2 2,7 4,3	0,8 1,0 h _{non} 85	
Beton TSM Betonso Nominelle Eir Gerissener und ungerissener Beton TSM Betonso	Verschiebungen ichraubengrößenschraubtiefe Scherlast Verschiebung	$\begin{array}{c} \delta_{N0} \\ \delta_{N\infty} \end{array}$ unter $\begin{array}{c} V \\ \delta_{V0} \\ \delta_{V\infty} \end{array}$	[mm] [mm] statisc hnom [mm] [kN] [mm] [mm]	1,0 1,0 her und h _{nom1} 40 3 1, 3	1,1 1,2 d quasi- 5 h _{nom2} 55 ,3 55 ,1 12 h _{nom2}	1 1 1 -statisco	,2 ,2 cher C 8 h _{non} 55 8,6 2,7 4,1	0,9 0,9 Querbelas h _{nom3} 65 h _{nom1}	1,2 1,2 tung h _{nom1} 55	10 h _{nom2} 75 16,2 2,7 4,3	0,8 1,0 h _{non} 85	
Beton TSM Betonso Nominelle Eir Gerissener und ungerissener Beton TSM Betonso Nominelle Eir	Verschiebung rschiebungen chraubengrößenschraubtiefe Scherlast Verschiebung chraubengrößenschraubtiefe	δ_{N0} $\delta_{N\infty}$ unter V δ_{V0} $\delta_{V\infty}$	[mm] statisc hnom [mm] [kN] [mm] [mm] [mm]	1,0 1,0 her und h _{nom1} 40 3 1, 3	1,1 1,2 d quasi- 5 h _{nom2} 55 ,3 55 ,1 12 h _{nom2}	1 1 1 -statiso	,2 ,2 cher C 8 h _{non} 55 8,6 2,7 4,1	0,9 0,9 Querbelas h _{nom3} 65 h _{nom1}	1,2 1,2 tung h _{nom1} 55	10 h _{nom2} 75 16,2 2,7 4,3	0,8 1,0 h _{nor} 85	

TOGE Betonschraube TSM high Performance	
Leistungsmerkmale	Anhang C7
Verschiebungen unter statischer und quasi-statischer Belastung	

Tabelle 14: Seismische Leistungskategorie C2	1) – Verschiebungen mit verfüllten Ringspalt
gemäß Anhang B7, Bild 5	

TSM Betonschraubengröß	e		8	10	12	14
Manipulla Finankan shairfa		h _{nom}		om3		
Nominelle Einschraubtiefe			65	85	100	115
Verschiebungen unter Zug	belastung (Aus	führun	g Sechskan	tkopf)		
Verschiebung DLS	δ _{N,eq(DLS)}	[mm]	0,66	0,32	0,57	1,16
Verschiebung ULS	δ _{N,eq(ULS)}	[mm]	1,74	1,36	2,36	4,39
Verschiebungen unter Que	erbelastung (A	usführu	ng Sechska	ntkopf mit l	Durchgangs	loch)
Verschiebung DLS	δ _{V,eq(DLS)}	[mm]	1,68	2,91	1,88	2,42
Verschiebung ULS	δ _{V,eq} (ULS)	[mm]	5,19	6,72	5,37	9,27

Tabelle 15: Seismische Leistungskategorie C2 ¹⁾ – Verschiebungen **ohne verfüllten** Ringspalt gemäß Anhang B7, Bild 3

TSM Betonschraubengröße			8	10	12	14	
Namicalla Finashun, shtiafa		h _{nom}		h	h _{nom3}		
Nominelle Einschraubtiefe	[mm]	65	85	100	115		
Verschiebungen unter Zug	gbelastung (Aus	führung	Sechskan	tkopf)			
Verschiebung DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16	
Verschiebung ULS	$\delta_{N,eq(ULS)}$	[mm]	1,74	1,36	2,36	4,39	
Verschiebungen unter Zu	gbelastung (Aus	führung	Senkkopt	f)			
Verschiebung DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32			
Verschiebung ULS	$\delta_{N,eq(ULS)}$	[mm]	1,74	1,36	keine Leistung bewert		
Verschiebungen unter Qu	erbelastung (A	usführur	ng Sechska	ntkopf mi	t Durchgangs	loch)	
Verschiebung DLS	δ _{V,eq(DLS)}	[mm]	4,21	4,71	4,42	5,60	
Verschiebung ULS	δ _{V,eq(ULS)}	[mm]	7,13	8,83	6,95	12,63	
Verschiebungen unter Qu	erbelastung (A	usführur	ng Senkko	pf mit Durc	chgangsloch)	1	
Verschiebung DLS	δ _{V,eq(DLS)}	[mm]	2,51	2,98			
Verschiebung ULS	δ _{V,eq(ULS)}	[mm]	7,76	6,25	Keine Leistu	ing bewertet	

¹⁾ gilt nicht für A4 und HCR

TOGE Betonschraube TSM high Performance	
Leistungsmerkmale	Anhang C8
Verschiebungen unter seismischer Beanspruchung	