

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0425 of 23 February 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TOGE concrete screw TSM high performance LT

Mechanical fasteners for use in concrete

TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg DEUTSCHLAND

TOGE plant

19 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

European Technical Assessment ETA-21/0425

Page 2 of 19 | 23 February 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0425

Page 3 of 19 | 23 February 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TOGE concrete screw TSM high performance LT is an anchor in size 6, 8 and 10 mm made of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements (static and quasi-static loading)	See Annex C5
Characteristic resistance and displacements for seismic performance categorie C1	See Annex C3
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C4

European Technical Assessment ETA-21/0425

Page 4 of 19 | 23 February 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

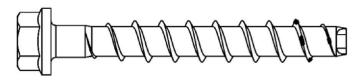
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

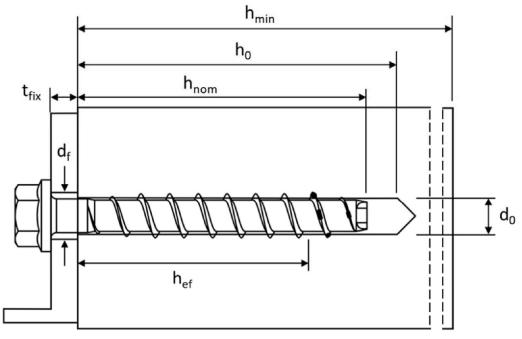
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 February 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section


beglaubigt:
Tempel


Product in installed condition

TOGE concrete screw TSM high performance LT

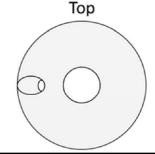
- stainless steel A4
- high corrosion resistant steel HCR

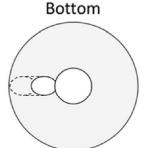
e.g. TOGE concrete screw with hexagon head and fixture

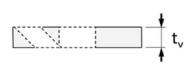
 d_0 = nominal diameter of drill hole

t_{fix} = thickness of fixture

d_f = diameter of clearance hole

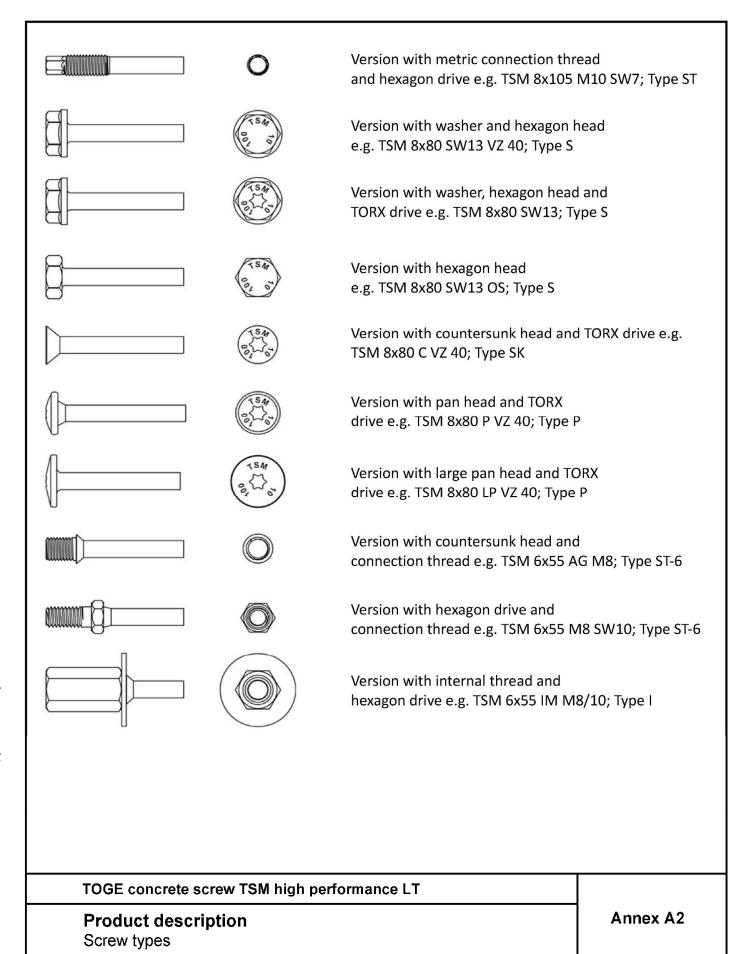

h_{min} = minimum thickness of member


h_{nom} = nominal embedment depth


h₀ = depth of drill hole

h_{ef} = effective embedment depth

Filling washer (optional) to fill annular gap


TOGE concrete screw TSM high performance LT

Product description

Product in installed condition

Annex A1

T - 1	1_1	1 - 4		n 1			: - 1
Ta	n	le l	١.	IVI	ат	er	าลเ

- 10010 111110	. cerrar								
Part	Product name	Material							
all tumas	TSM LT A4	1.4401; 1.4404; 1.4571; 1.4578							
all types	TSM LT HCR	1.4529							
		Nominal cha	racteristic steel	Rupture					
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A₅ [%]					
all types	TSM LT A4	560	700	~ 0					
all types	TSM LT HCR	300	700	≤ 8					

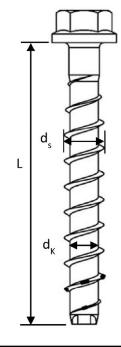
Table 2: Dimensions

				6					10			
Anchor size	Anchor size						8		10			
Nominal		h _{nom}	1 ¹⁾	2	3	1	1 2 3		1	2	3	
embedment dept	h	[mm]	35	45	55	45	55	65	55	75	85	
Screw length	≤L	[mm]					500					
Core diameter	dĸ	[mm]		5,1			7,2		9,2			
Thread outer diameter	d _s	[mm]		7,6			10,5		12,5			
Thickness of filling washer	t₀	[mm]		-			5		5			

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Marking:

TSM high performance LT A4


Screw type: TSM LT
Screw size: 10
Screw length: 100
Material: A4

TSM high performance LT HCR

Screw type: TSM LT
Screw size: 10
Screw length: 100
Material: HCR

TOGE concrete screw TSM high performance LT

Product description

Material, dimensions and markings

Annex A3

Specification of Intended use

Table 3: Anchorages subject to

TSM concrete screw size	6				8		10			
Nominal embedment	h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	35	45	55	45	55	65	55	75	85
Static and quasi-static loads			All sizes and all embedment depths							
Fire exposure				All Size	es and a	ıı embe	ament (aeptns		
C1 category - seismic		х	ok	ok	ok	Х	ok	ok	Х	ok

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A3, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A3, screw with marking HCR: CRC V

TOGE concrete screw TSM high performance LT	
Intended use	Annex B1
Specification	

x no performance assessed

Specification of Intended use - continuation

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055,
 Edition February 2018.

The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling. Hollow drilling only for size 8-10.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B6 for sizes 6-10 except for applications with filled borehole and not for seismic applications.
- Cleaning of borehole is not necessary, if using a hollow drill.

TOGE concrete screw TSM high performance LT

Intended use
Specification continuation

Annex B2

Tab	le 4:	Instal	lation	param	eters
-----	-------	--------	--------	-------	-------

TSM concrete screw size		6				8			10			
Nominal embedment depth			h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth		[mm]	35	45	55	45	55	65	55	75	85	
Nominal drill hole diameter	d ₀	[mm]		6			8			10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40			8,45			10,45			
Depth of drill hole	h ₀ ≥	[mm]	40	50	60	55	65	75	65	85	95	
Clearance hole diameter	d _f ≤	[mm]		8			12		14			
Installation torque (version with connection thread)	Tinst	[Nm]	10				20			40		
Torque impact screw driver		[-]	Ma	ax. torq	ue acco	ording t	o manı	ufacture	er's instructions			
Torque impact screw driver		נ-ן		160			300		450			

1) only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions $h_0 \\ h_{min} \\ h_{nom} \\ h_{min} \\ d_0 \\ h_{ef} \\ h_{min} \\ d_0 \\ h_{ef} \\ h_{nom} \\ h_0 \\ h_{ef} \\ h_{nom} \\ h_{nom}$

TOGE concrete screw TSM high performance LT

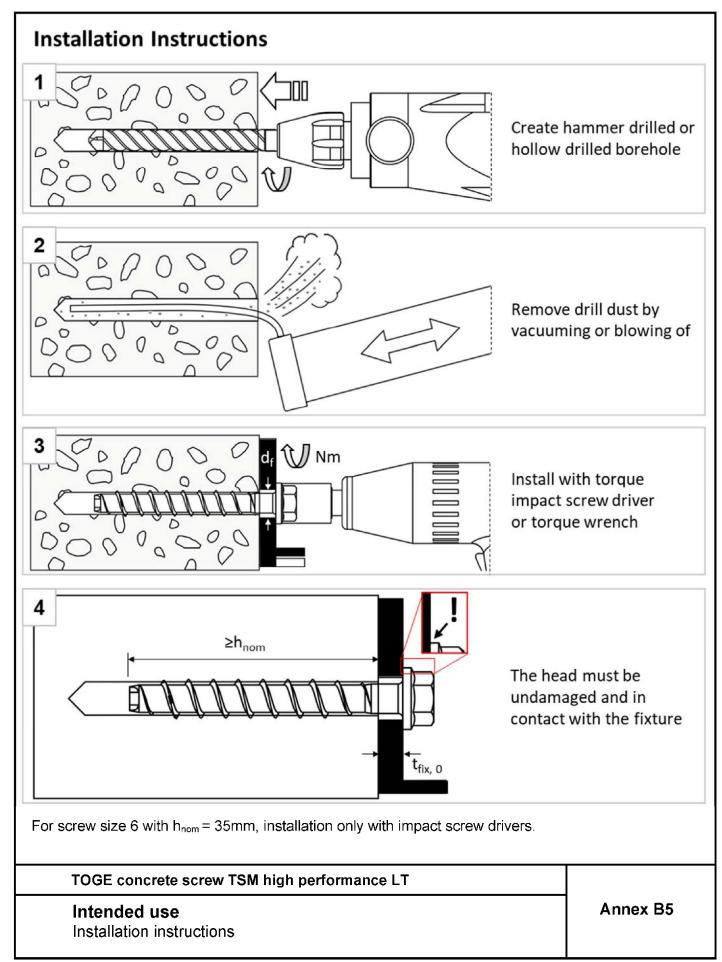
Intended use Installation parameters

Annex B3

Electronic copy of the ETA by DIBt: ETA-21/0425

Table 5: Minimum thickness of member, minimum edge distance and minimum spacing

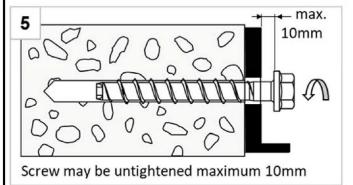
TSM concrete screw		6			8		10				
Naminal ambadment	h _{nom}			h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment	Jominal embedment depth		35	45	55	45	55	65	55	75	85
Minimum thickness of member	h _{min}	[mm]	80	80	100	80	100	120	100	130	130
Minimum edge distance	C _{min}	[mm]	35	35	35	35	35	35	40	40	40
Minimum spacing	Smin	[mm]	35	35	35	35	35	35	40	40	40

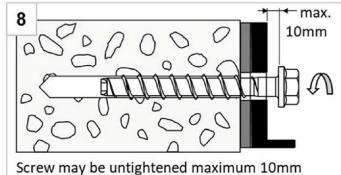

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

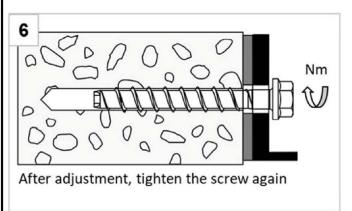
TOGE concrete screw TSM high performance LT

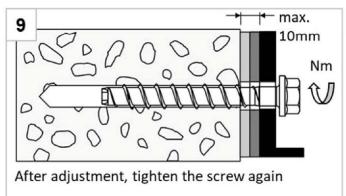
Intended use
Minimum thickness of member, minimum edge distance and minimum spacing

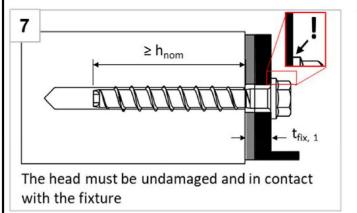
Annex B4

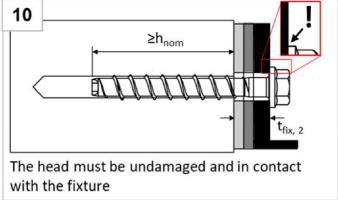





Installation Instructions - Adjustment


1. Adjustment



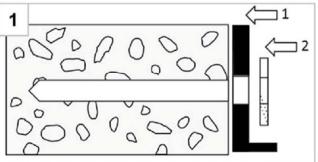

2. Adjustment

Note:

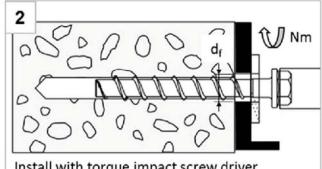
The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .

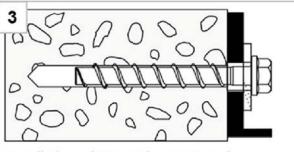
TOGE concrete screw TSM high performance LT

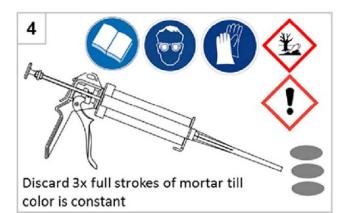
Intended use

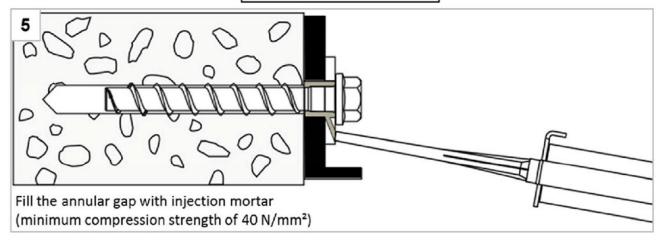

Installation instructions - Adjustment

Annex B6




Positioning of fixture and filling washer


After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)


Install with torque impact screw driver or torque wrench

Installed condition without injected mortar in the filling washer

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C3.

TOGE concrete screw TSM high performance LT

Intended use

Installation instructions - Filling annular gap

Annex B7

Table 6: Charac	teristic v	alues :	for sta	atic and	l guasi	-static	loadii	าย							
TSM concrete so					6	2 2 3 4 . 0		8			10				
			h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}			
Nominal embedm	nent depth		[mm]							55	75	85			
Steel failure for	tension a	nd shea	ar load	ding											
Characteristic ten		$N_{Rk,s}$	[kN]	J	14,0			27,0							
Partial factor		γ _{Ms,N}	[-]					1,5							
Characteristic she	ar load	$V^0_{Rk,s}$	[kN]		7,0		13	3,5	17,0	22,5	34	٠,0			
Partial factor		γ Ms,V	[-]					1,25							
Ductility factor		k ₇	[-]					0,8							
Characteristic ber load	nding	M ⁰ Rk,s	[Nm]		10,9			26,0		56,0					
Pull-out failure i	Pull-out failure in uncracked concrete														
Characteristic ten load C20/25	sion	N _{Rk,p}	[kN]	3,5	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0			
	C25/30			1,08	1,22	1,17	1,22		1,13		1,22				
Increasing	C30/37			1,15	1,36	1,26	1,	36	1,20	1,36					
factor for $N_{Rk,p} = N_{Rk,p} (C20/25) \cdot \Psi_c$	C40/50	Ψ_{c}	$\Psi_{\rm c}$	Ψ_{c}	$\Psi_{\rm c}$	[-]	1,27	1,41	1,30	1,	41	1,23		1,41	
ТЧКК,р (С20/25) - Т с	C50/60			1,38	1,58	1,42	1,	58	1,32						
Pull-out failure i	n cracked	concre	ete												
Characteristic ten	sion	N _{Rk,p}	[kN]	2,5	1,5	3,0	3,0	5,5	8,0	6,0	13,0	17,0			
	C25/30			1,09	1,08	1,22		1,22	-	1,22	1,	17			
Increasing	C30/37		, ,	1,18	1,15	1,36		1,36		1,36	1,27				
factor for $N_{Rk,p} = N_{Rk,p} (C20/25) \cdot \Psi_c$	C40/50	Ψ _c	[-]	1,32	1,27	1,41		1,41		1,41	1,31				
ηκ,μ (020/25) - Γ	C50/60			1,45	1,38	1,58		1,58		1,58	1,	43			

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

TOGE concrete screw TSM high performance LT

Performances

Characteristic values for static and quasi-static loading

Annex C1

Table 7: C	haracteristic v	alues f	for sta	atic and	quasi	i-stati	c loadi	ng cor	ntinuat	tion		
TSM concr	ete screw size		6				8		10			
Naminalan	- dmont donth		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal en	nbedment depth		[mm]									85
Concrete fa	ailure: concrete	cone f	failure	and spl	itting f	failure						
Effective en depth	nbedment	h _{ef}	[mm]	25	34	42	32	41	49	40	57	65
k-factor	cracked	kcr	k _{cr} [-] 7,7									
K-IdCtOI	uncracked	kucr	[-]					11,0				
Concrete	spacing	S _{cr,N}	[mm]					3 x h _{ef}				
cone failure	edge distance	C _{cr,N}	[mm]				1	.,5 x h _{ef}				
Splitting	resistance	N ⁰ Rk,sp	[kN]	3,5	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0
failure	spacing	S _{cr,sp}	[mm]	120	160	240	200	240	290	230	280	320
case 1	edge distance	C _{cr,sp}	[mm]	60	80	120	100	120	145	115	140	160
Splitting	resistance	N ⁰ Rk,sp	[kN]	2)	2,5	5,5	5,5	8,0	11,0	7,0	15,0	20,0
failure	spacing	S _{cr,sp}	[mm]	2)	116	168	128	164	196	160	224	260
case 2	edge distance	C _{cr,sp}	[mm]	2)	58	84	64	82	98	80	114	130
Pry-out fail												
Factor for p	ory-out failure	k ₈	[-]	1,0	1,	,6	2,1	2	,8		2,5	
Installation	factor	γinst	[-]					1,0				
Concrete e	edge failure											
Effective length in concrete								85				
Nominal ou screw	iter diameter of	d _{nom}	[mm]		6			8			10	

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

TOGE concrete screw TSM high performance LT

Performances

Characteristic values for static and quasi-static loading continuation

Annex C2

8.06.01-98/21

²⁾ no performance assessed

Table 8: Seismic category C1 – Characteristic load values (only type S, type SK, type	oe ST,
type ST-6 ¹⁾ , type P and type I ¹⁾)	

type ST-6 ¹⁾ , type P and type I ¹⁾)											
TSM concrete screw size	(5		3	10						
Nominal embedment depth [n			h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom1}	h _{nom3}			
			45	55	45	65	55	85			
Steel failure for tension and shear load (version type S, type SK, type ST, type ST-61), type P and type I1)											
Characteristic tension load	N _{Rk,s,C1}	[kN]	14	1,0	27	7,0	45	5,0			
Partial factor	γ _{Ms,N}	[-]			1	,5					
Characteristic shear load Type S, Type ST, Type P	V _{Rk,s,C1}	[kN]	3,5 4,0 8,0 10,0 14,0								
Characteristic shear load Type SK	V _{Rk,s,C1}	[kN]	2,5	2)	4,5	7,0	14,0	10,0			
Partial factor	γ _{Ms,V}	[-]	1,25								
Without filling of the annular gap ³⁾	$lpha_{\sf gap}$	[-]	0,5								
With filling of the annular gap ⁴⁾	$lpha_{\sf gap}$	[-]		1,0							
Pull-out failure (version type	S, type S	SK, type	ST, type S1	Γ-6 ¹⁾ , type P	and type I	¹⁾)					
Characteristic tension load in cracked concrete C20/25	N _{Rk,p,C1}	[kN]	1,5	3,0	3,0	8,5	6,0	17,0			
Concrete cone failure (versi	on type :	S, type S	SK, type ST,	type ST-6 ¹), type P an	d type I ¹⁾)					
Effective embedment depth	h _{ef}	[mm]	34	42	32	49	40	65			
Edge distance	C _{cr,N}	[mm]			1,5	x h _{ef}					

Concrete cone failure (version type S, type SK, type ST, type ST-6 ¹⁾ , type P and type I ¹⁾)											
Effective embedment depth	h _{ef}	h _{ef} [mm] 34 42 32 49 40 6									
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}								
Spacing	S _{cr,N}	[mm]		3 x h _{ef}							
Installation safety factor	γinst	[-]	1,0								

Concrete pry-out failure (version type S, type SK, type ST and type P)										
Factor for pry-out failure k_8 [-] 1,6 2,1 2,8 2,5								,5		
Concrete edge failure (version type S, type SK, type ST and type P)										
Effective length in concrete I _f [mm] 45 55 45 65 55 85										
Nominal outer diameter of screw	Nominal outer diameter of dnom [mm] 6 8 10									

¹⁾ only tension load

TOGE concrete screw TSM high performance	e LT
Performances Seismic category C1 – Characteristic load v	Annex C3

²⁾ no performance assessed

 $^{^{\}rm 3)}$ without filling of the annular gap according to annex B5 $^{\rm 4)}$ with filling of the annular gap according to annex B7

TSM concrete scre		6			8			10				
Ni a casima di a casima di casima			h _{nom}	1 ¹⁾	2	3	1	2	3	1	2	3
Nominal embedme	[mm]	35	45	55	45	55	65	55	75	8!		
Steel failure for tension and shear load												
	R30	N _{Rk,s,fi30}	[kN]		0,9		2,4				4,4	
	R60	N _{Rk,s,fi60}	[kN]	0,8			1,7			3,3		
	R90	N _{Rk,s,fi90}	[kN]		0,6			1,1			2,3	
	R120	N _{Rk,s,fi120}	[kN]		0,4			0,7			1,7	
	R30	$V_{Rk,s,fi30}$	[kN]		0,9			2,4			4,4	
characteristic	R60	V _{Rk,s,fi60}	[kN]		0,8			1,7			3,3	
Resistance	R90	V _{Rk,s,fi90}	[kN]		0,6			1,1			2,3	
	R120	V _{Rk,s,fi120}	[kN]		0,4			0,7			1,7	
	R30	M ⁰ Rk,s,fi30	[Nm]		0,7		2,4			5,9		
	R60	M ⁰ _{Rk,s,fi60}	[Nm]		0,6		1,8			4,5		
	R90	M ⁰ Rk,s,fi90	[Nm]		0,5		1,2			3,0		
R120 M ⁰ _{Rk,s,fi120} [Nm] 0,3 0,9 2,3												
Pull-out failure											1	
characteristic	R30-90	$N_{Rk,p,fi}$	[kN]	0,6	0,4	0,8	0,8	1,4	2,0	1,5	3,3	4,
Resistance	R120	N _{Rk,p,fi}	[kN]	0,5	0,3	0,6	0,6	1,1	1,6	1,2	2,6	3,
Concrete cone fail	ure											
characteristic	R30-90	N ⁰ Rk,c,fi	[kN]	0,5	1,2	2,0	1,0	1,9	2,9	1,7	4,2	5,
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,4	0,9	1,6	0,8	1,5	2,3	1,4	3,4	4,
Edge distance												
R30 - R120		C _{cr,fi}	[mm]					2 x h _{et}	-			
In case of fire attacl	c from more	e than one s	ide, the	minir	num e	dge d	istanc	e shall	be ≥3	00mm	٦.	
Spacing												
R30 bis R120		S _{cr,fi}	[mm]					4 x h _{et}				
Pry-out failure												
R30 bis R120		k ₈	[-]	1,0	1,	,6	2,1	2	,8		2,5	
The anchorage dep	th has to be	increased f	or wet	concre	te by	at leas	st 30 n	nm co	mpare	d to t	he give	en

1)	only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry
	internal conditions

TOGE concrete screw TSM high performance LT

Performances

Fire exposure – characteristic values of resistance

Annex C4

Table 10: Disp	lacements	under sta	atic and	quasi-static	tension l	oad
TUDIC TO, DISP	naccincing	anaci ste	itic arra	quasi static	teriorer i	ouu

TSM concre	ete screw size	(8		10					
Nominal embedment depth			h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
			[mm]	45	55	45	55	65	55	75	85
Cracked concrete displacement	tension load	N	[kN]	0,72	1,45	1,63	2,74	4,06	3,04	6,22	8,46
	displacement	δ_{NO}	[mm]	0,19	0,27	0,27	0,53	0,45	0,26	0,58	0,61
	displacement	$\delta_{\text{N}^{\infty}}$	[mm]	0,55	0,84	0,49	0,66	0,61	0,69	0,92	1,1
	tension load	N	[kN]	2,11	4,07	4,24	5,97	8,03	5,42	9,17	12,28
Uncracked	—			•			-		,	-	
concrete	displacement	$\delta_{ ext{NO}}$	[mm]	0,42	0,43	0,33	0,49	0,58	0,84	0,62	0,79
Concrete	displacement	δ _{N∞}	[mm]	0,42	0,43		0,58			0,79	

Table 11: Displacements under static and quasi-static shear load

TSM concrete screw size			(8		10				
Nominal embedment depth h _{nom}				h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Norminal embedment depth		[mm]	45 55		45 55 65		55 75 85		85		
Cracked and	Cracked and Shear load V [kN			3,	8,6			16,2			
uncracked		$\delta_{ m V0}$		1,55		2,7			2,7		
concrete	displacement	$\delta_{V^{\infty}}$	[mm]	3,1		4,1			4,3		

TOGE concrete screw TSM high performance LT

Performances

Displacements under static and quasi-static loads

Annex C5