

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0123 of 10 February 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

TSM high performance, TSM high performance A4, TSM high performance HCR

Fasteners for use in concrete for redundant non-structural systems

TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg DEUTSCHLAND

TOGE Dübel GmbH & Co. KG

16 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601, Edition 06/2018

ETA-16/0123 issued on 19 July 2019

European Technical Assessment ETA-16/0123 English translation prepared by DIBt

Page 2 of 16 | 10 February 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0123

Page 3 of 16 | 10 February 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TOGE concrete screw TSM high performance of sizes 5 and 6 mm is an anchor made of galvanised steel respectively steel with zinc flake coating and of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B2, Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

European Technical Assessment ETA-16/0123 English translation prepared by DIBt

Page 4 of 16 | 10 February 2023

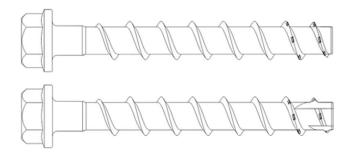
5	Technical details necessary for the implementation of the AVCP system, as provided for
	in the applicable European Assessment Document

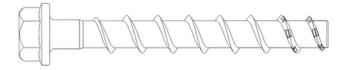
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin 10 February 2023 by Deutsches Institut für Bautechnik

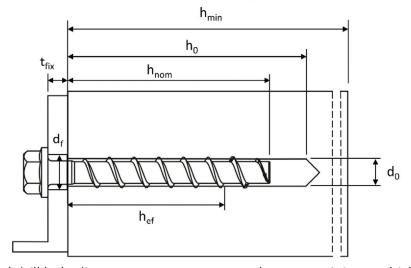
Dipl.-Ing. Beatrix Wittstock

Head of Section


beglaubigt:
Tempel


Product in installed condition

TOGE concrete screw TSM high performance (TSM 5 and TSM 6)


- Galvanized carbon steel
- Zinc flakes coated carbon steel

- Stainless steel A4
- High corrosion resistant steel HCR

e.g. TOGE concrete screw, zinc flakes coated, with hexagon head and fixture

d₀ = nominal drill hole diameter

 t_{fix} = thickness of fixture

d_f = clearance hole diameter

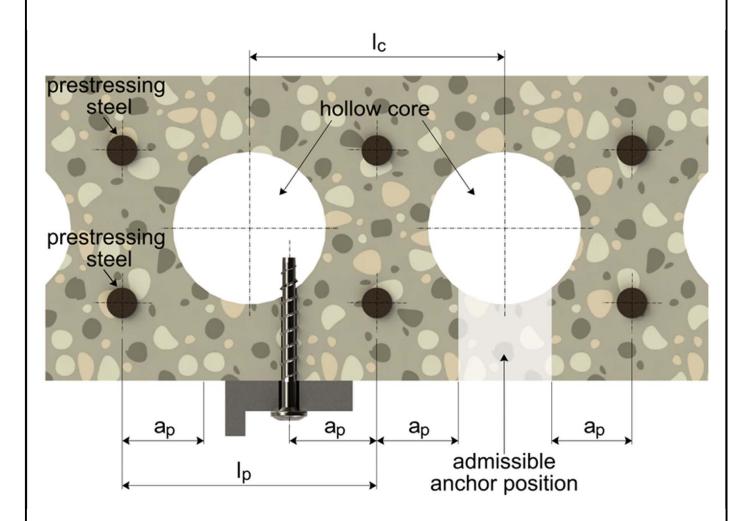
h_{min} = minimum thickness of member

h_{nom} = nominal embedment depth

 $h_0 = drill hole depth$

h_{ef} = effective embedment depth

TOGE concrete screw TSM High Performance


Product description

Product in installed condition

Annex A1

Installed condition in precast prestressed hollow core slabs

Important ratio:
$$rac{w}{e} \leq 4$$
, 2

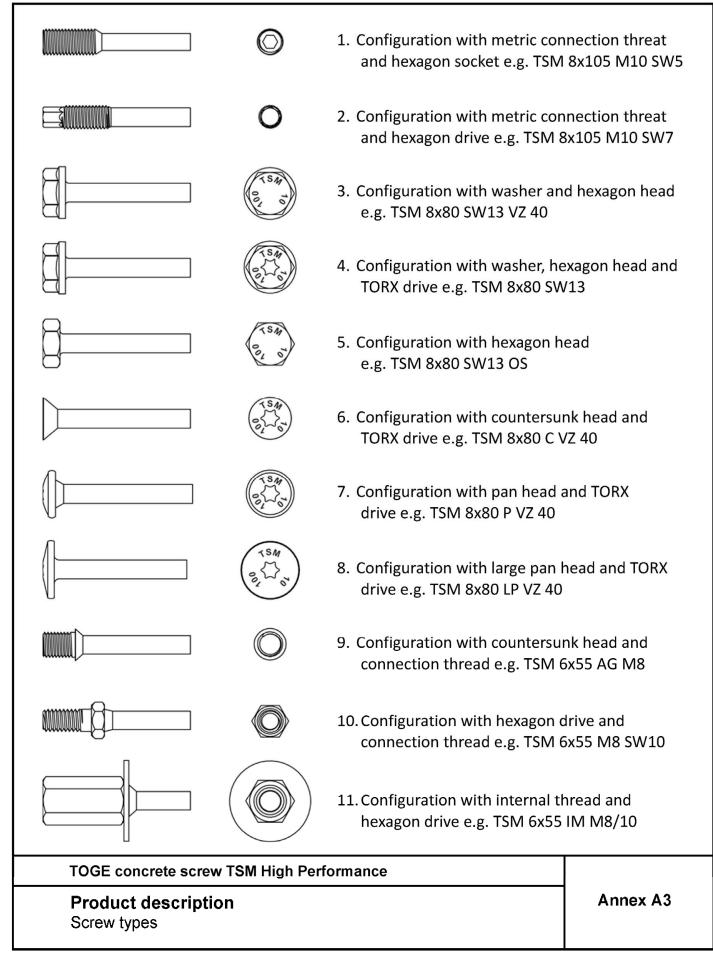
w = core width

e = web thickness

 l_c = core distance \geq 100 mm

l_p = prestressing steel ≥ 100 mm

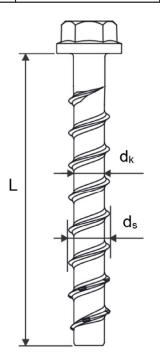
a_p = distance between anchor position and prestressing steel ≥ 50mm


TOGE concrete screw TSM High Performance

Product description

Installed condition in precast prestressed hollow core slabs

Annex A2


Table 1: Material

Part	Product name	Material
all	TSM high performance	- Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 - Zinc flake coating according to EN ISO 10683:2018 (≥5μm)
types	TSM high performance A4	1.4401; 1.4404; 1.4571; 1.4578
	TSM high performance HCR	1.4529

		Nominal chara	Rupture		
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A ₅ [%]	
	TSM high performance				
types TSM high performance A4		560	700	≤ 8	
types	TSM high performance HCR				

Table 2: Dimensions

Anchor size			TSM 5	TSM 6
Screw length	≤L	[mm]	2	200
Core diameter	d _k	[mm]	4,0	5,1
Thread outer diameter	ds	[mm]	6,5	7,5

Marking:

TSM high performanceScrew type: TSM
Screw size: 10

Screw length: 100

TSAM OF OF

TSM high performance A4

Screw type: TSM Screw size: 10 Screw length: 100

Material: A4

TSM high performance HCR

Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

Marking "k" or "x"

for anchors with connection thread and h_{nom}= 35mm

TOGE concrete screw TSM High Performance

Product description

Material, Dimensions and markings

Annex A4

Specification of Intended use

Anchorages subject to:

- static and quasi static loads
- Used only for multiple use for non-structural application according to EN 1992-4:2018
- Used for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs): size 5 and 6
- Used for anchorages in prestressed hollow core slabs: size 6

Base materials:

- Compacted reinforced and compacted unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A4, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A4, screw with marking HCR: CRC V

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055,
 Version February 2018.
- The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B2, Table 3.

Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.

TOGE concrete screw TSM High Performance

Intended use
Specification

Annex B1

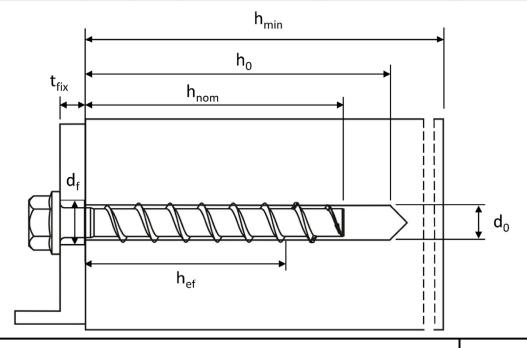
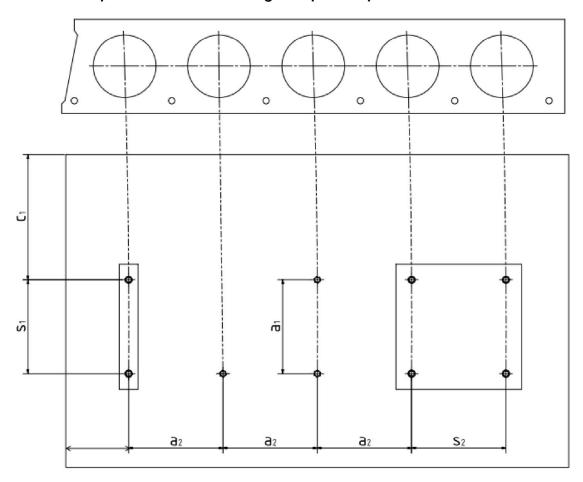


Table 3: Installation parameters

TSM concrete screw size			TSM 5	TSM 6	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}
Norminal embedment depth		[mm]	35	35	55
Nominal drill hole diameter	d ₀	[mm]	5	ϵ	
Cutting diameter of drill bit d _{cut} ≤		[mm]	5,40	6,40	
Drill hole depth	rill hole depth h ₀ ≥		40	40	60
Clearance hole diameter	Clearance hole diameter d _f ≤		7	8	
Installation torque (version with connection thread) $T_{inst} \le$		[Nm]	8	10	0
Recommended torque impact screw driver		[NIma]	Max. torque according to manufacturer's instruction		er's instructions
		[Nm]	110	160	

Table 4: Minimum thickness of member, minimum edge distance and minimum spacing

TSM concrete screw size			TSM 5	TSM 6	
h _{nom1}		h_{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment de	ent aeptn		35	35	55
Minimum thickness of member	h _{min}	[mm]	80	80	100
Minimum edge distance	C _{min}	[mm]	35	35	40
Minimum spacing	Smin	[mm]	35	35	40


TOGE concrete screw TSM High Performance

Intended use Installation parameters

Annex B2

Installation parameters for anchorages in precast prestressed hollow core slabs

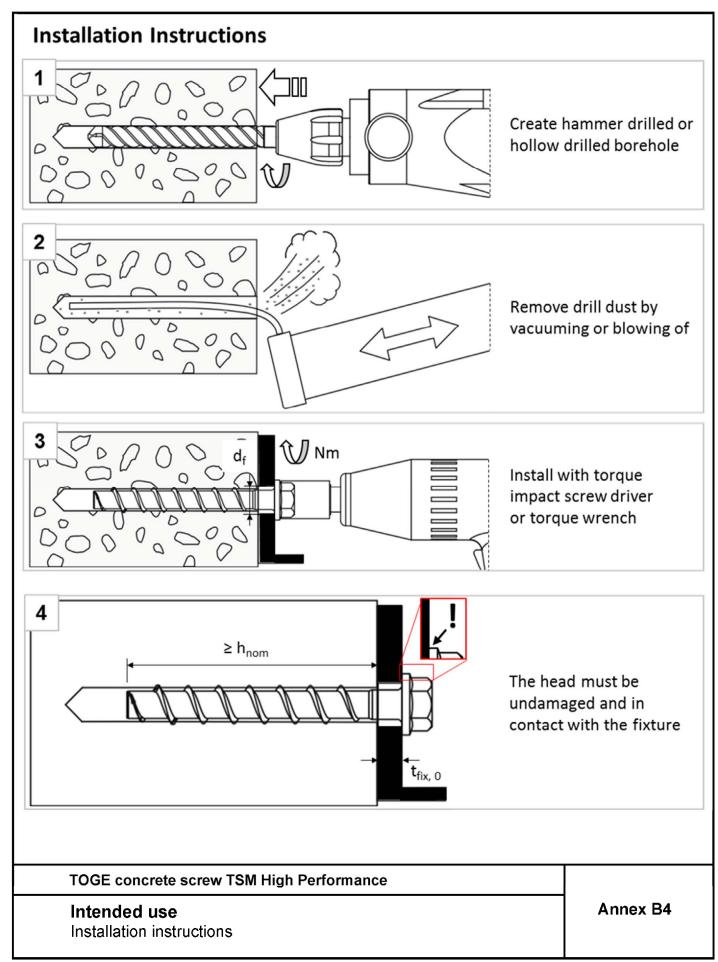
 c_1 , c_2 = edge distance

 s_1 , s_2 = anchor spacing

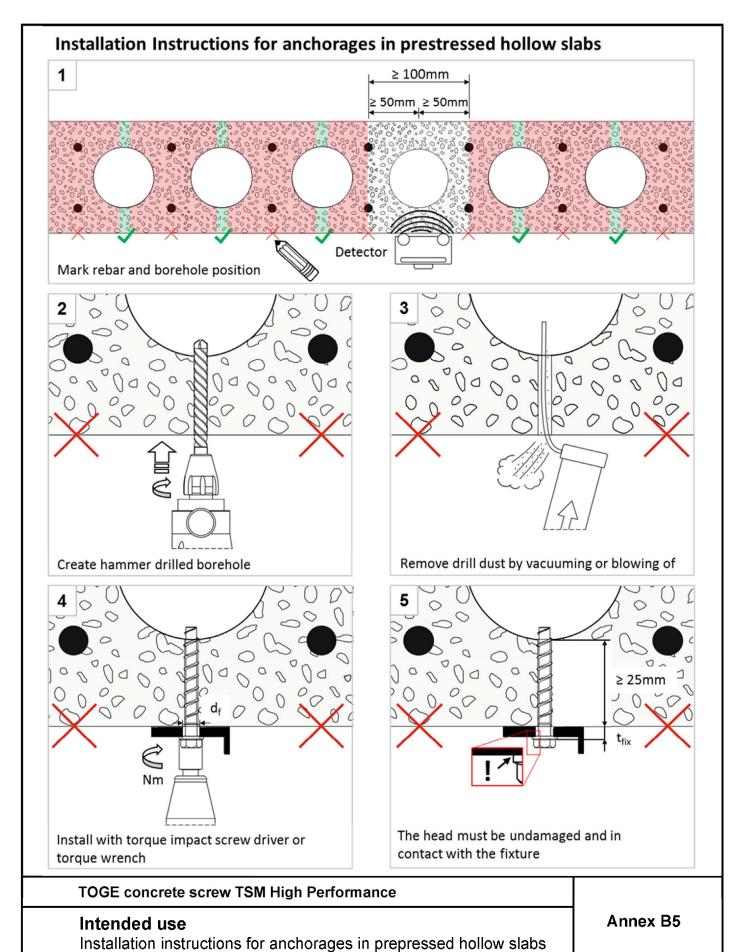
 a_1 , a_2 = distance between anchor groups

c_{min} = minimum edge distance ≥ 100 mm

 s_{min} = minimum anchor spacing \geq 100 mm


a_{min} = minimum distance between anchor groups ≥ 100 mm

Intended use


Installation parameters for anchorages in precast prestressed hollow slabs

Annex B3

TSM concrete screw size			TSM 5	TSM 5 TSM 6		
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	
		[mm]	35	35	55	
Steel failure for tension and shear		d shear	loadin	g		
	tension load	N _{Rk,s}	[kN]	8,7 14,0		
Partial factor		γMs,N	[-]	1,5		
Characteristic	shear load	$V_{Rk,s}$	[kN]	4,4	-	7,0
Partial factor		γ _{Ms,V}	[-]		1,25	
Ductility factor	or	k ₇	[-]		0,8	
Characteristic	bending load	M ⁰ _{Rk,s}	[Nm]	5,3	1	.0,9
Pull-out failu	ıre					
Characteristic	cracked	N _{Rk,p}	[kN]	1,5	3,0	7,5
tension load C20/25	uncracked	N _{Rk,p}	[kN]	1,5	3,0	7,5
Increasing	C25/30				1,12	
factor for C30	C30/37	Ψς		1,22		
	C40/50	T c	[-]	1,41		
N _{Rk,p(C20/25)} * ψ ₀	C50/60				1,58	
Concrete fai	lure: Splitting f	ailure,	concret	e cone failure and	pry-out failure	
Effective emb	edment depth	h _{ef}	[mm]	27	27	44
k-factor	cracked	k ₁ =k _{cr}	[-]		7,7	
K-IdCtOI	uncracked	k ₁ =k _{ucr}	[-]		11,0	
Concrete	spacing	S _{cr,N}	[mm]	3 x h _{ef}		
cone failure	edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}	
C 1	resistance	N ⁰ Rk,Sp	[kN]		min(N ⁰ Rk,c; NRk,p)	
Splitting failure	spacing	S _{cr,Sp}	[mm]	120	120	160
	edge distance	C _{cr,Sp}	[mm]	60	60	80
Factor for pry	-out failure	k ₈	[-]	1,0		
Installation factor γ _i		γinst	[-]	1,2	1,0	1,0
Concrete ed	ge failure					
Effective length in concrete $I_f = h_{ef}$		[mm]	27	27	44	
Nominal outer diameter of screw d _{nom} [mm]			[mm]	5		6
TOGE	concrete screy	v TSM I		erformance		
	concrete screv	v TSM I	ligh Pe	erformance		Annex

Characteristic values for static and quasi-static loading

Table 6: Characteristic values of resistance in precast prestressed hollow core slabs C30/37 to C50/60

TSM concrete screw size			TSM 6		
Bottom flange thickness	d₀	[mm]	≥ 25	≥ 30	≥ 35
Characteristic resistance	F ⁰ Rk	[kN]	1	2	3
Edge distance	Ccr	[mm]	100		
Spacing	Scr	[mm]		200	
Installation factor	γinst	[-]	1,0		

Table 7: Limiting distances for application in precast prestressed hollow core slabs

Distances for application in precast prestressed hollow core slabs					
Minimum edge distance	C _{min}	[mm]	≥ 100		
Minimum anchor spacing	Smin	[mm]	≥ 100		
Minimum distance between anchor groups	a _{min}	[mm]	≥ 100		
Distance of core	I _c	[mm]	≥ 100		
Distance of prestressing steel	Ιp	[mm]	≥ 100		
Distance between anchor position and prestressing steel	a _p	[mm]	≥ 50		

TOGE concrete screw TSM High Performance	
Performances Characteristic values and limiting distances in precast prestressed hollow core slabs	Annex C2

Material Nominal embed Steel failure fo		th		TSM high performance		high	1	nigh
		th	1.	·	TSM high performance		TSM high performance A4/HCR	
		LII	h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom}
Steel failure to	r tension	·		35	35	55	35	55
		and shear lo					<u> </u>	
-	R30	F _{Rk,s,fi30}	[kN]	0,8	0,9		1,2	
Characteristic Resistance	R60	F _{Rk,s,fi60}	[kN]	0,6	0,8		1,2	
	R90	F _{Rk,s,fi90}	[kN]	0,4	0,6		1,2	
	R120	F _{Rk,s,fi120}	[kN]	0,3	0,4		0,8	
	R30	M ⁰ Rk,s,fi30	[Nm]	0,5	0,7		0,9	
	R60	M ⁰ Rk,s,fi60	[Nm]	0,4	0,6		0,9	
	R90	M ⁰ Rk,s,fi90	[Nm]	0,2	0,5		0,9	
	R120	M ⁰ Rk,s,fi120	[Nm]	0,2	0,3		0,6	
Pull-out failure	5							
Characteristic Resistance	R30-R90	N _{Rk,p,fi}	[kN]	0,375	0,75	1,875	0,75	1,87
	R120	N _{Rk,p,fi}	[kN]	0,3	0,6	1,5	0,6	1,5
Concrete cone	failure							
Characteristic	R30-R90	N ⁰ Rk,c,fi	[kN]	0,65	0,65	2,21	0,65	2,2
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,52	0,52	1,76	0,52	1,70
Edge distance								
R30 - R120						$x h_{\text{ef}}$		
In case of fire at	ttack from	more than o	ne side,	the minimum ed	ge distanc	e shall be	≥300mm.	
Spacing								
R30 - R120			[mm]	4 x h _{ef}				
Pry-out failure								
R30 - R120		k ₈	[-]			1,0		
The anchorage ovalue.	depth has	to be increas	sed for v	vet concrete by at	least 30 r	mm comp	ared to the	given
¹⁾ Not for applicat	tion in prest	ressed hollov	v core sla	abs				
TOGE co	ncrete sc	rew TSM Hig	gh Perf	ormance				

Characteristic values under fire exposure