

TOGE TSM A

Asphalt screw for fastening directly into asphalt - without concrete foundation

Simple Fastening

Simple fastening directly into the asphalt – without additional concrete foundation.

Frost proof

Sealing the borehole prevents water penetration and frost damage in winter.

Flush with surface

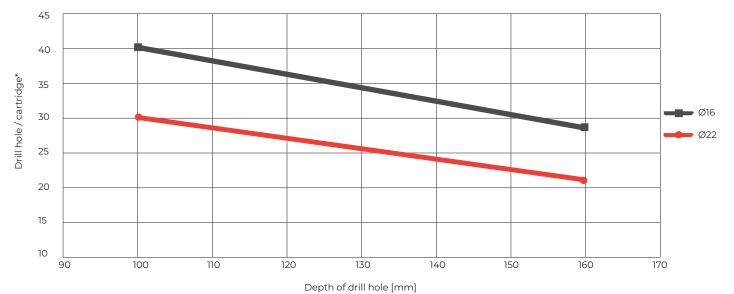
Surface flush installation, also suitable for temporary installation.

Approval

Base Materials


Application in all common asphalt types.

Processing instructions composite mortar



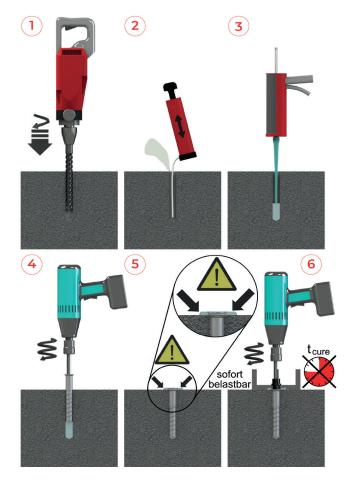
Temperature in ground	Processing time	Min. curing time	
0°C	90 min	144 h	
6°C	80 min	48 h	
10°C	60 min	28 h	
15°C	40 min	18 h	
20°C	30 min	12 h	
25°C	12 min	9 h	
35° C	8 min	6h	
40° C	8 min	4h	

Strokes ATA 2004C / Depth of drill hole and Ø

Cartridge coverage ATA 2004C

^{*} The number of drill holes per cartridge depends on the drill hole depth. The specified quantities only apply if the borehole depth is adhered to.

Technical Data


Without fire exposure, steel

Screw size TSM A			16 x 100	22 x 100	22 x 155
Drill bit diameter	d _o	[mm]	16	22	22
Depth of drill hole	h, min	[mm]	110	110	165
Minimum thickness of member	h _{min} ≥	[mm]	150	150	200
Embedment depth of anchor	h _{nom}	[mm]	100	100	155
Fastening screw used			M 10 x 30	M 16 x 40	M 16 x 40
Strokes ATA 2004			1 bis 2	1 bis 2	2 bis 3
Cartridge is sufficient			21	15	10
Maximum shock load	F	[kN]	40	50	80

Installation Instructions

Installation

- 1) Create borehole.
- 2) Clean the borehole thoroughly.
- 3) Inject composite mortar.
- 4) Screw in the asphalt screw.
- 5) After reaching the screw-in depth, the composite mortar must emerge at the asphalt surface.
- 6) The attachment can be installed immediately there is no need to observe the curing time of the composite mortar.

Operating principle of anchoring

1. The 90°-Principle

The collar of the anchor is braced against the base plate at an angle of 90°. When torque is applied, the entire system is tilted, but this is prevented by the asphalt. Vertical extraction of the anchor from the substrate is not possible.

2. The Undercut

When the screw anchor is screwed in, a thread-shaped undercut is created in the substrate. This creates a positive fit between the substrate and the thread of the asphalt screw.

3. The chemical mortar

The air voids present in the asphalt are compressed by the final turning process of the TSM A as if by a hydraulic cylinder with the composite mortar. This results in a firmer and more homogeneous base in the force application area.

4. Preloaded free anchoring

The collar of the TSM A is larger than the clearance hole in the fixture to be connected. The base plate is clamped between the collar and the head of the fastening screw. This way the TSM A remains unencombered.

5. Large surface

In the case of shock load, a limited excavation does not occur as in concrete. A much larger area is activated.

6. No overhanging loads

The anchoring system is not suitable for permanent tensile loading.

