

TOGE TSM BC SB

Noise barrier anchor

Approval

Approval of the Federal Railway Authority for alternating fatigue loading up to 5 million load cycles as defined in DB Ril 804.

Approved for outdoor use with a service life of 50 years.

Low edge distances

Low edge distances allow noise barrier uprights to be anchored to narrow components while simultaneously absorbing high forces.

Load Transmission

Transfer of fatigue-relevant actions even with installation-related inclination of the anchors up to 3°.

Transmission of shear load even with lever arm.

Transmission of forces in the existing concrete by the undercutting technique in combination with composite mortar.

Installation Fast and secure installation.

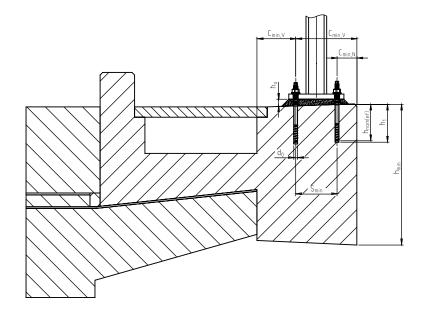
Approvals

Approvals

General design type approval / General technical approval Z-21.1-1799.

Federal Railway Authority approval 213.3-213izbia/005-2101#009

Federal Railway Authority approval 213.3-213izbia/005-2101#011


Base Materials

Application in cracked and non-cracked concrete of strength classes from C20/25 to C50/60.

Technical Characteristics

Installation parameters and load values for design according to EN 1992-4 Noise barrier anchor TSM BC SB L

Anchor size			TSM BC SB 16	C SB 16 TSM BC SB 22			
Screw length	L [r	nm]	230	315	345		
Nominal diameter of drill bit	d _o	[mm]	16	22			
Depth of drill hole	h _o ≥	[mm]	100	100			
Effective embedment depth of anchor	h _{nom} = h _{ef} ≥	[mm]	100	100			
Clearance hole in the base plate	d _f ≤	[mm]	26	32			
Diameter metric connection thread	d _{Gew}	[mm]	M18	M24			
Length metric connection thread	L _{Gew}	[mm]	55	100	120		
Grouting height	h _u ≤	[mm]	40	40			
Installation torque	T _{inst}	[mm]	100	200			
Minimum egde distance	C _{min} ≥	[mm]	70	80			
Minimum spacing	S _{min} ≥	[mm]	70	80			
Minimum base material thickness	h _{min,alt} ≥	[mm]	h _{ef} + 70	h _{ef} + 100			
Hexagonal drive for installation of the screws	SW	[mm]	12	17			
Design value of tension load in cracked concrete C20/25 ^{1) 2)}	N _{Rd,c} ≥	[kN]	26,5	26,5			
Design value of shear force for steel failure without lever arm $^{1\!\!\!\!(2)}$	V _{Rd,s}	[kN]	76,8	85,6			
Design value of shear load for steel failure with lever arm $^{1\!\!\!\!1\!\!\!\!2\!\!\!\!2}$	V _{Rd,s, M}	[kN]	11,5 ³⁾	19,2 ⁴⁾	16,8 ⁵⁾		
Nominal torque of tangential screwdriver		[Nm]	≤ 600	≤ 1000			
Fatigue verification per individual anchor							
Design value of the amplitude of the normal stress resulting from the tension load $\ensuremath{^{\rm 2}}$	$\Delta\sigma_{_{5Mio}}$	[N/mm²]	52,17				
Design value of the amplitude of the shear stress resulting from the shear load. $^{\mbox{\tiny 2}\mbox{\tiny 2}}$	Δτ _{5Μίο}	[N/mm²]	26,1				
Design value of the amplitude of the flexural stress resulting from normal tension load and shear load with lever arm $^{\rm 2l}$	$\Delta\sigma B_{_{SMio}}$	[N/mm]	113,04				

¹) For the determination of the design values, the partial safety factor from the approval was taken into account on the resistance side.

2

⁹ For the determination of the design values, the partial safety factor norm the approval was taken into acces. ³ These values apply without the influence of the spacing and edge distances. ³ The specified values apply only under the following conditions: $a_{M} = 2,0$; $h_{u} = 40$ mm; $t_{fix} = 15$ mm; $a_{3} = 0$. ⁴ The specified values apply only under the following conditions: $a_{M} = 2,0$; $h_{u} = 40$ mm; $t_{fix} = 25$ mm; $a_{3} = 0$. ⁵ The specified values apply only under the following conditions: $a_{M} = 2,0$; $h_{u} = 40$ mm; $t_{fix} = 20$ mm; $a_{3} = 0$.

Technical Characteristics

Installation parameters for anchor design according to simplified method - TSM BC SB 22 M24L

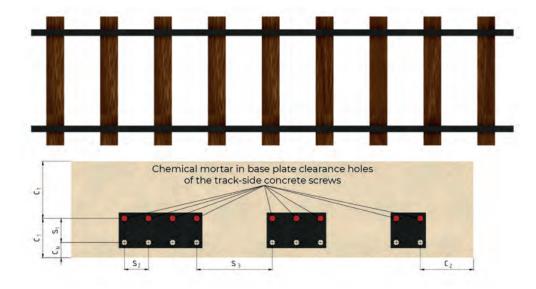
Anchor size	L [n	nm]	315	345
Nominal diameter of drill bit	d _o	[mm]	22	
Depth of drill hole	h _o ≥	[mm]	210	
Effective embedment depth of anchor	h _{nom} = h _{ef} ≥	[mm]	200	
Clearance hole in the base plate	d _f ≤	[mm]	32	
Diameter metric connection thread	d _{Gew}	[mm]	M24	
Length metric connection thread	L _{Gew}	[mm]	100	120
Grouting height	h _u ≤	[mm]	40	
Installation torque	T _{inst}	[Nm]	200	
Minimum edge distance for tension load	C _N	[mm]	80	
Minimum edge distance for shear load in load direction	C ₁ ≥	[mm]	230	
Minimum edge distance in longitudinal direction at the end of the bridge cap	C₂ ≥	[mm]	345	
Minimum spacing parallel to the track	S ₁ ≥	[mm]	150	
Minimum spacing transverse to the track	S ₂ ≥	[mm]	150	
Minimum spacing between anchor groups	S ₃ ≥	[mm]	600	
Minimum base material thickness	h _{min, alt} ≥	[mm]	300	
Hexagonal drive for installation of the screws	SW	[mm]	17	
Nominal torque of tangential screwdriver		[Nm]	≤1000	

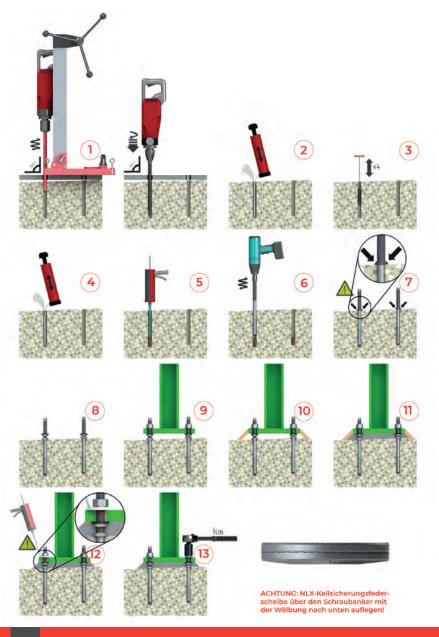
Load values for anchor design according to simplified method -TSM BC SB 22 M24L

Anchor size	L	[mm]	315	345			
Design value of tension load for a group of 4 anchors $^{1\!\!\!\!13\!\!\!\!3\!\!}$	N _{Rd,4}	[kN]	98,7				
Design value of tension load for a group of 6 anchors $^{1\!\!1}$ $^{4\!\!2}$	N _{Rd,6}	[kN]	114,7				
Design value of tension load for a group of 8 anchors $^{1\!\!15\!\!1}$	N _{Rd,8}	[kN]	162,0				
Design value of shear load for a group of 4 anchors $^{1\!\!(3)}$	V _{Rd,4}	[kN]	40,6				
Design value of shear load for a group of 6 anchors ^{1) 4)}	V _{Rd,6}	[kN]	48,0				
Design value of shear load for a group of 8 anchors ^{1) 5)}	V _{Rd,8}	[kN]	55,3				
Fatigue verification per individual anchor							
Design value of the amplitude of the normal stress resulting from the tension load $\ensuremath{^{2_{\rm J}}}$	$\Delta \sigma_{_{5Mio}}$	[N/mm²]	52,17				
Design value of the amplitude of the shear stress resulting from the shear load. $^{\mbox{\tiny 2}\mbox{\tiny 2}}$	$\Delta \tau_{_{5Mio}}$	[N/mm²]	26,1				
Design value of the amplitude of the flexural stress resulting from normal tension load and shear load with lever arm $^{\rm 2\rm l}$	$\Delta \sigma B_{_{SMio}}$	[N/mm]	143,47				

 11 For the determination of the design values, the partial safety factor from the approval γ_{inst} = 1.5 was taken into account on the resistance side.

 $^{2)}$ For the determination of the design values, the partial safety factor from the approval γ_{inst} = 1.15was taken into account on the resistance side.


³] The load applies in total to 2 pulled anchors of a group of 4. The other 2 anchors must receive compressive forces in this case.


⁴⁾ The load applies in total to 3 pulled anchors of a group of 6. The other 3anchors must receive compressive forces in this case.

⁵] The load applies in total to 4 pulled anchors of a group of 8. The other 4 anchors must receive compressive forces in this case.

Installation Instructions

- 1) Drill a hole at right angles to the base plate.
- 2) Thoroughly blow out the drill hole.
- 3) Brush the drill hole 4x.
- 4) Thoroughly clean the drill hole again.
- 5) Discard three full strokes of composite mortar then inject composite mortar.
- 6) Screw in concrete screw.
- 7) After reaching the screw-in depth, the composite mortar must extrude at the concrete surface.
- Hand-tighten the tensioning nut against the concrete. Screw on adjusting nut and place elastomer washer.
- 9) Position the post.
- 10) Build formwork.
- 11) Line base plate with suitable mortar (max. lining height 40mm).
- 12) Fill the annular gap between the screw anchor and the drill hole in the base plate.
- 13) Place the NLX wedge-lock washer with the curvature facing downwards and apply torque.