

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0099 of 1 August 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TSM high performance

Screw anchor for use in masonry

TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg DEUTSCHLAND

TOGE Dübel

39 pages including 3 annexes which form an integral part of this assessment

330460-00-0604, Edition 08/2022

European Technical Assessment ETA-23/0099

Page 2 of 39 | 1 August 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-23/0099

Page 3 of 39 | 1 August 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TOGE concrete screw TSM high performance is an anchor in size 5,6, 8 and 10 mm made of galvanised steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterized by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Characteristic resistance to steel failure of a single screw anchor under tension loading	N _{Rk,s} see Annex C1	
Characteristic resistance to steel failure of a single screw anchor under shear loading	V _{Rk,s} [kN], M ⁰ _{Rk,s} see Annex C1	
Characteristic resistance to pull-out failure or brick breakout failure of a single screw anchor under	N _{Rk,p} , N _{Rk,b} , N _{Rk,p,c} , N _{Rk,b,c} see Annex B7, C4, C9, C14, C19, C23	
tension loading	α _{j,N} see Annex C3, C8, C13, C18, C23	
Characteristic resistance to local brick failure and brick edge failure of a single screw anchor under	V _{Rk,b,II} , V _{Rk,b,⊥} , V _{Rk,c,II} , V _{Rk,c,⊥} see Annex B7, C4, C9, C14, C19, C23	
shear loading	$α_{j,VII}, α_{j,V\perp}$ see Annex C3, C8, C13, C18, C23	
Characteristic resistance to brick breakout failure of a screw anchor group under tension loading	N_{Rk}^g see Annex B7	
	α _{g,N} see Annex B7, C2, C8, C13, C18, C22	
Characteristic resistance to local brick failure and brick edge failure of a screw anchor group under	$V_{Rk,b,II}^g, V_{Rk,b,\perp}^g, V_{Rk,c,II}^g, V_{Rk,c,\perp}^g$ see Annex B7	
shear loading	$\begin{array}{c} \alpha_{g,\text{VII}},\alpha_{g,\text{VII}\perp} \\ \text{see Annex B7, C2, C8, C13, C18, C22} \end{array}$	

European Technical Assessment ETA-23/0099

Page 4 of 39 | 1 August 2023

English translation prepared by DIBt

Essential characteristic	Performance
Edge distances, joint distances, spacing, member thickness	c _{cr} , s _{crII} , s _{cr⊥} see Annex B7
	Cmin, CjII, Cj \perp , SminII, Smin \perp see Annex B7, C2, C8, C13, C18, C22 h _{min} see Annex C2, C7, C12, C17, C22
Resistance to combined tension and shear loading (hollow and perforated bricks)	Limit value X for interaction see Annex C14
Displacements	δ_{N0} , $\delta_{N\infty}$, δ_{V0} , $\delta_{V\infty}$ see Annex C5, C10, C15, C 20, C 24

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A 1
Resistance to fire	$\begin{array}{c} N_{Rk,s,fi} \;,\; N_{Rk,p,fi} \;,\; N_{Rk,b,fi} \;,\; V_{Rk,s,fi} \;,\; M^{0}_{Rk,s,fi} \;,\; \\ c_{min,fi} \;,\; C_{j,fi} \\ see \; Annex \; C6,\; C11,\; C16,\; C21 \\ N_{Rk,fi}^{g} \;,\; s_{min,fi} \;,\; c_{min,fi} \;,\; C_{j,fi} \\ see \; Annex \; C5,\; C10,\; C15,\; C20 \end{array}$

3.3 Aspects of durability

Essential characteristic	Performance	
Durability	see Annex B1	

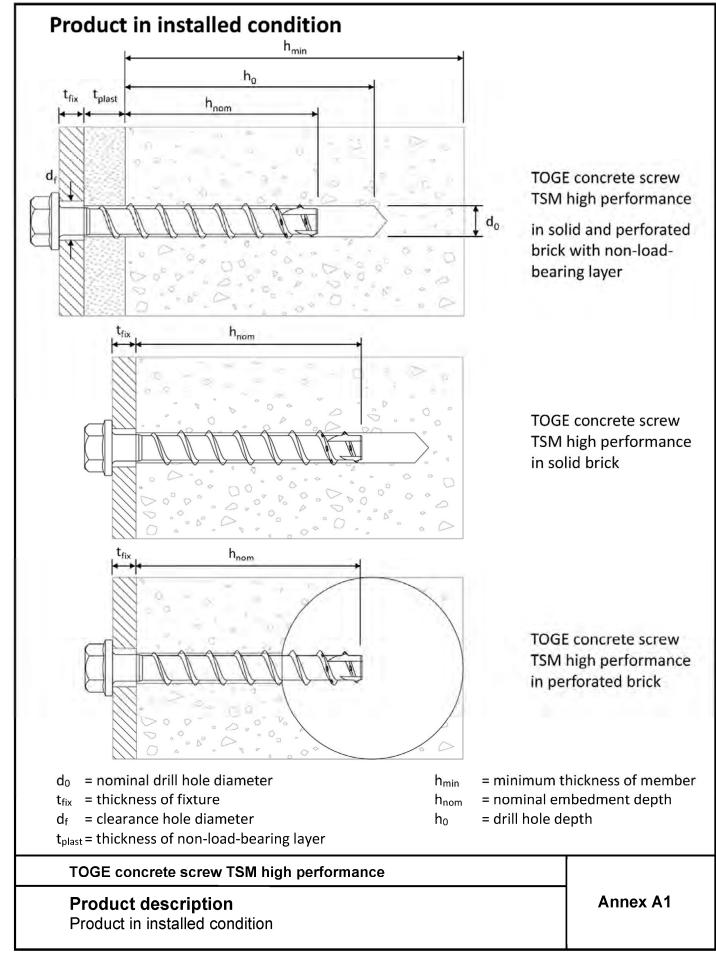
Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330460-00-0604 the applicable European legal act is: 97/177/EC.

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 1 August 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section

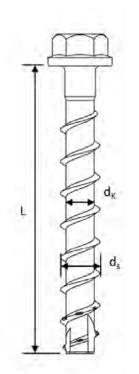
beglaubigt:
Pascal Stiller

TOGE concrete screw TSM high performance Product description Screw types			Annex A2
		Configuration with internal thread hexagon drive e.g. TSM 6x55 IM M	
		Configuration with hexagon drive a connection thread e.g. TSM 6x55 N	
		Configuration with countersunk he connection thread e.g. TSM 6x55 A	
	(5M)	Configuration with large pan head drive e.g. TSM 8x80 LP VZ 40; Type	
	(154) (2) (2)	Configuration with pan head and T drive e.g. TSM 8x80 P VZ 40; Type	
	(15.4) (2) (2) (3)	Configuration with countersunk he e.g. TSM 8x80 C VZ 40; Type SK	ad and TORX drive
	(54)	Configuration with hexagon head e.g. TSM 8x80 SW13 OS; Type S	
	(154) (2)	Configuration with washer, hexago TORX drive e.g. TSM 8x80 SW13; T	
	(15 th	Configuration with washer and here.g. TSM 8x80 SW13 VZ 40; Type S	A 1,77 July 2011 (1) 1 10 1 10 1
	0	Configuration with metric connect and hexagon drive e.g. TSM 8x105	

Table 1: Material

Part	Product name		Material	
All types	TSM high performance	- Zinc flake coating acc	17 galvanized acc. to EN IS cording to EN ISO 10683:20 cording to EN ISO 10683:20	018 (≥5μm)
		Nominal cha	racteristic steel	Prisa di prisa
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm ²]	Elongation A ₅ [%]
All types	TSM high performance	560	700	< 8

Table 2: Dimensions


TSM concrete so	crew siz	ze	5		6		8	1	0
Nominal embedm	ent	hnom	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
depth		[mm]	35	35	55	45	65	55	75
Screw length	<u> </u>	[mm]				500			
Core diameter	d _K	[mm]	4,0	5	,1	7	,1	9	,1
Thread outer diameter	ds	[mm]	6,5	7	,5	10),6	12	2,6

Marking:

TSM high performance

Screw type: TSM
Screw size: 10
Screw length: 100

TOGE concrete screw TSM high performance

Product description

Material, dimensions and marking

Annex A3

Specification of Intended use

Anchorages subject to:

- Static or quasi-static actions in tension, shear or combined tension and shear or bending
- Exposure to fire (for dry masonry only)

Base materials:

- Masonry made of solid bricks and perforated bricks see Annex B3
- Minimum thickness of member h_{min} see Annexes C2, C7, C12, C17, C22
- Bearing joints must be completely filled with mortar of at least compressive strength class M5 according to EN 998-2:2016. Butt joints may, but do not have to be filled with mortar.
- In case of fire, all joints must be completely filled with mortar according to EN 998-2:2016 with strength class at minimum M5
- Dry or wet masonry (during installation)

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Temperature range of the masonry over the period of use: -40°C to +80°C

Design:

- The anchorage is designed in accordance with EOTA Technical Report TR 054:2022-07.
- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and masonry work.
- Screws with nominal embedment depth smaller than 50 mm may only be used for anchoring of statically indeterminate systems
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor to supports, etc.).
- The screw may be placed in the wall side and in the reveal side of the masonry. The installation parameters for installation in the reveal side must be observed in accordance with Annex B8. In case of Silka XL solid calcium silicate brick KS 12DF, the installation is possible in the wall side only.
- For solid blocks, the characteristic load-bearing capacities also apply to larger block formats, greater compressive strengths and densities of the masonry blocks.
- Installation in the joint and close to the joint is not permitted; the distances to joints according annexes C3, C8, C13, C18, C23 must be observed.

TOGE concrete screw TSM high performance	
Intended use	Annex B1
Specification	

Specification of Intended use - continuation

Installation:

- Bridging of non-load-bearing layers (e.g. plaster) is possible. When selecting the screw length L, the thickness of the plaster layer t_{plast} must be taken into account.
 L ≥ h_{nom} + t_{plast} + t_{fix} (see figures in Annex A1)
- During installation, the joint, axis and edge distances specified by the planner must be taken into account.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site
- The borehole is drilled with hammer, percussion, suction or masonry drills in hammer mode or rotary mode. The masonry must not be damaged during hammer drilling. If cracks occur during drilling, the rotary mode must be used. In this case, the drill hole must be discarded.
- Incorrectly drilled holes must be filled with high-strength mortar.

TOGE concrete screw TSM high performance

Intended use
Specification continuation

Annex B2

Table 3: Solid and perforated bricks, dimensions and properties

20 - 2,0 - NF

Solid calcium si		acc. to DIN EN 771-2:		
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex
VC	L: ≥ 240			

≥ 26,0

≥ 2,0

C2 - C6

Silka XL solid calcium silicate brick KS 12DF acc. to DIN EN 771-2:2015-11	

Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex
KS - R (P) 20 - 2,0 - 12DF	L: ≥ 498 D: ≥ 175 H: ≥ 248	≥ 14,0	≥ 1,8	C7 – C11

Perforated calcium silicate brick KSL 3DF acc. to DIN EN 771-2:2015-11

Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex
SWKV KSL	L: ≥ 240	1		C12 -
12 - 1,6 - 3DF	D: ≥ 175	≥ 17,0	≥ 1,5	C16
12 - 1,0 - 301	H: ≥ 113			CIO

Solid clay brick MZ acc. to DIN EN 771-1:2015-11

D: ≥ 115

H: ≥ 71

Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex
MZ 20 - 2,0 - NF	L: ≥ 240 D: ≥ 115 H: ≥ 71	≥ 21,0	≥ 2,1	C17 – C21

Solid light weight concrete brick acc. to DIN EN 771-3:2015-11

Nomenclature Dimensions [mm]		Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Annex	
VBL 4 - 1,0 - 2DF	L: ≥ 240 D: ≥ 115 H: ≥ 113	≥ 4,0	≥ 1,5	C22 - C24	

TOGE concrete screw TSM high performance

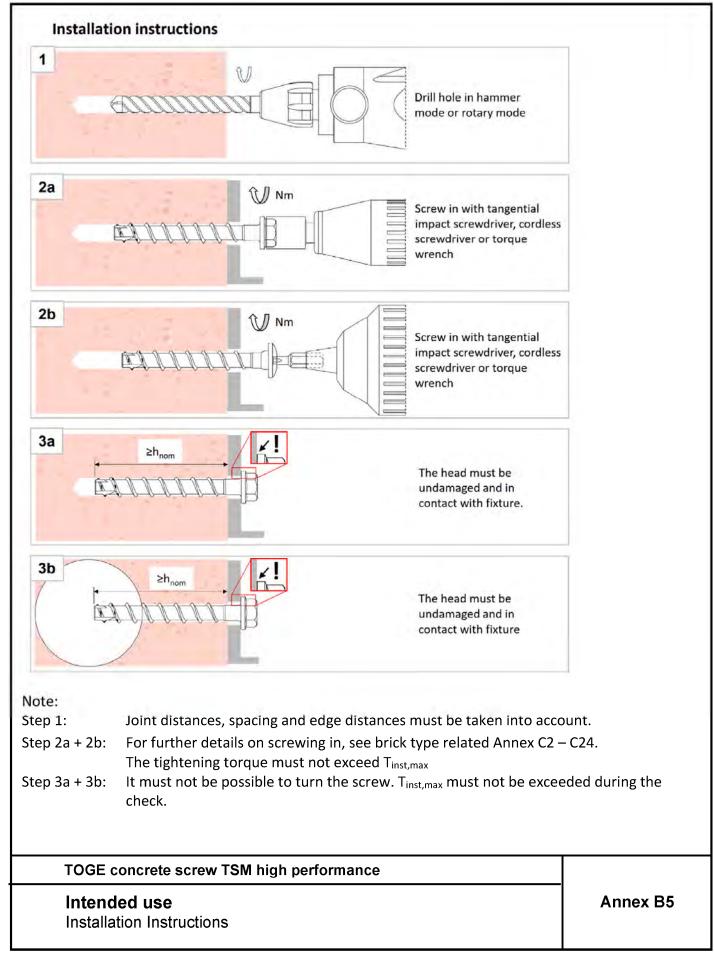
Intended use

Solid and perforated bricks, dimensions and properties

Annex B3

Table 4: General installation parameters

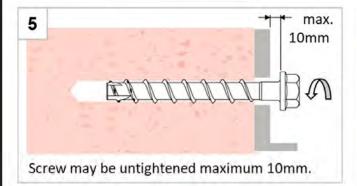
TSM screw size	5	6		8		10			
Nominal embedment depth $\begin{bmatrix} h_{nom} \\ [mm] \end{bmatrix}$		h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
		[mm]	35	35	55	45	65	55	75
Nominal drill hole diameter	d ₀	[mm]	5	6		8		1	0
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,40		8,45		10,	.45
Drill hole depth	h₀ ≥	[mm]	55	55	75	65	85	75	95
Clearance hole diameter			7	8		12		14	

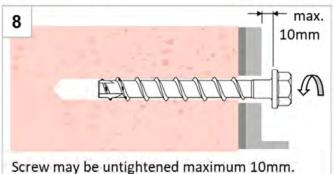

TOGE concrete screw TSM high performance

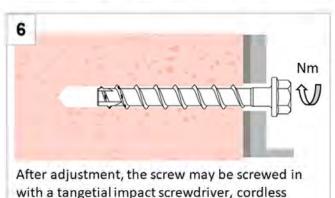
Intended use

General installation parameters

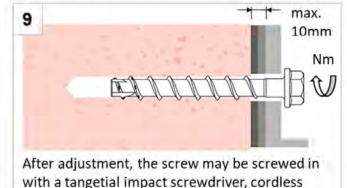
Annex B4



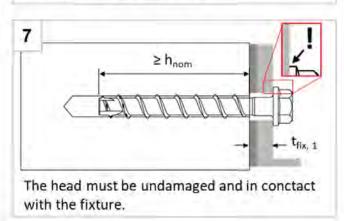


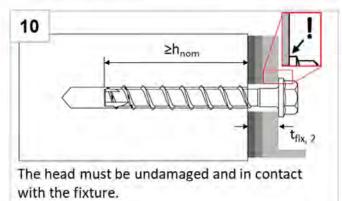

Installation Instructions - Adjustment

1. Adjustment



2. Adjustment



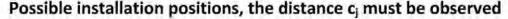


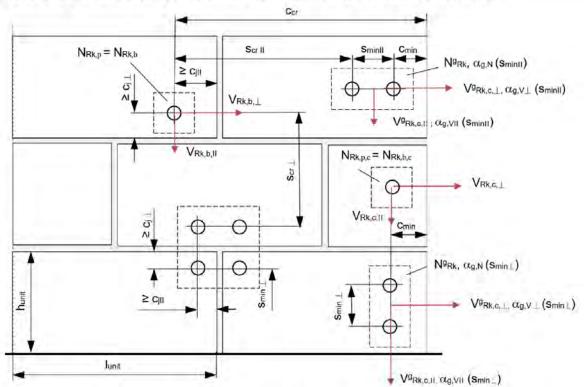
screwdriver or torque wrench.

screwdriver or torque wrench.

Note:

- The screw can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom}.
- 2. For further details on screwing in, see brick type-related annexes C2 C24


TOGE concrete screw TSM high performance


Intended use

Installation instruction – adjustment

Annex B6

= minimum edge distance to the free edge of the wall Cmin

= distance to the vertical joints without influence on resistance of the screw anchor Cil = distance to the horizontal joints without influence on resistance of the screw anchor

Cjl = minimum spacing parallel to horizontal joint Smin II

= minimum spacing perpendicular to the horizontal joint Smin I

= edge distance for transmission of the characteristic resistance of single screw anchor = 1,5h_{nom} \mathbf{C}_{cr}

= characteristic spacing parallel to the horizontal joint = 3,0hnom Scr II = characteristic spacing perpendicular to the horizontal joint = 3,0hnom

= length of the masonry unit lunit = height of the masonry unit

Scr 1

 $\alpha_{g,N}$ (s_{min II}) = group factor under tension load for minimum spacing parallel to horizontal joint

 $\alpha_{g,N}$ (s_{min 1}) = group factor under tension load for minimum spacing perpendicular to the horizontal joint

= group factor under shear load parallel to the edge $(\alpha_{g,V\parallel} = \alpha_{g,V\parallel} (s_{min\parallel}) = \alpha_{g,V\parallel} (s_{min\perp}))$ αg,V II

= group factor under shear load perpendicular to the edge $(\alpha_{g,\vee\perp} = \alpha_{g,\vee\perp}(s_{\min \perp})) = \alpha_{g,\vee\perp}(s_{\min \perp})$ $\alpha_{g,V} \perp$

 $N_{Rk} = N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c}$

 $V_{Rk, \perp} = V_{Rk,,b \perp} = V_{Rk,c \perp}; V_{Rk, \perp} = V_{Rk,,b \perp} = V_{Rk,c \perp}$

Für $s \ge s_{cr}$: $\alpha_{g,N}(s_{min \parallel}) = \alpha_{g,N}(s_{min \perp}) = \alpha_{g,V \parallel} = \alpha_{g,V \perp} = 2$

Für $s_{min} \le s \le s_{cr}$: $\alpha_{g,N}$ ($s_{min \mid I}$); $\alpha_{g,N}$ ($s_{min \mid L}$); $\alpha_{g,V \mid I}$; $\alpha_{g,V \mid L}$ according to installation parameters of brick in Annex C $N^{g}_{Rk}(s_{min | I}) = \alpha_{g,N}(s_{min | I}) \times N_{Rk}$ (group of 2 anchors with minimum spacing parallel to horizontal joint)

 $N^{g}_{Rk}(s_{min} \perp) = \alpha_{g,N}(s_{min} \perp) \times N_{Rk}$ (group of 2 anchors with minimum spacing perpendicular to horizontal joint)

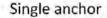
 $V^{g}_{Rk \parallel} = \alpha_{g, V \parallel} \mathbf{x} V_{Rk, \parallel} ; V^{g}_{Rk, \perp} = \alpha_{g, V \perp} \mathbf{x} V_{Rk, \perp}$ (group of 2 anchors) $N^{g}_{Rk} = \alpha_{g,N} (s_{min | I}) \times \alpha_{g,N} (s_{min | L}) \times N_{Rk}$ (group of 4 anchors)

 $V^{g}_{Rk \parallel} = \alpha_{g,V \parallel}^{2} x V_{Rk, \parallel}$; $V^{g}_{Rk, \perp} = \alpha_{g,V \perp}^{2} x V_{Rk, \perp}$ (group of 4 anchors)

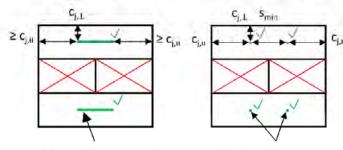
TOGE concrete screw TSM high performance

Intended use

Possible installation position


Annex B7

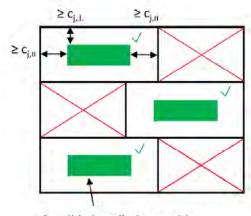
743519 23 8.06.04-12/23



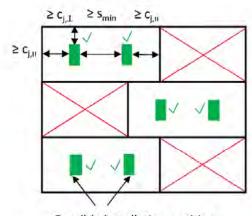
Installations parameter for installation in the reveal site

Positioning in reveal in brick types KS NF, MZ NF, VBL 2DF

Double anchor group


Possible installation position

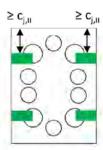
Possible installation position


Positioning in reveal in brick type KSL 3DF

Single anchor

Double anchor group

Possible installation position



Possible installation position

Top view

≥ c_{j,ii} ≥ c_{j,ii}

Top view

TOGE concrete screw TSM high performance

Intended use

Possible installation in reveal

Annex B8

Table 5: Characteristic resistance to steel failure

TSM screw size		5		6	8		10	
Nominal embedment depth	h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
	[mm]	35	35	55	45	65	55	75

Steel failure for tension an	d shear	loadin	g						
Characteristic resistance under tension loading	N _{Rk,s}	[kN]	8,7 14,0 27,0 45,0					,0	
Partial factor	γ _{Ms,N} 1)	[-]	1,5						
Characteristic resistance under shear loading	V _{Rk,s}	[kN]	4,4	7,0	13,5	17,0	22,5	34,0	
Partial factor	γ _{Ms,V} 1)	[-]			1,25				
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	5,3					5,0	

¹⁾ In absence of other national regulations

TOGE concrete screw TSM high performance

Performances

Characteristic resistance to steel failure

Table 6: Material characteristics solid calcium silicate brick KS

Solid calcium silicate brick KS acc. to DIN EN 771-2:2015-11									
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]					
KS 20 - 2,0 - NF	L: ≥ 240 D: ≥ 115 H: ≥ 71	≥ 26,0	≥ 2,0	240					

Table 7: Installation parameters solid calcium silicate brick KS

Use category (installation)					(dry or we	et			
TSM screw size			5	5 6 8			1	0		
Nominal embedment depth h _{nor}		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
Nominal embedment depth		[mm]	35	35	55	45	65	55	75	
Nominal drill hole diameter	er d _o [mm		5		5	8	3	1	0	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40 6,40		8,45		10,45			
Drill hole depth	h ₀ ≥	[mm]	55	55	75	65	85	75	95	
Clearance hole diameter	d _f ≤	[mm]	7		3	12		14		
Torque for manual installation	max. T _{inst}	[Nm]	6	11 27		37	46			
Impact screw driver	T _{imp,max}	T _{imp,max} [Nm]		Max. torque according to the manufacturer's instructions						
				185		300				

Table 8: Min. edge distance, spacing, group factors

TSM screw size			5 6		8		10		
Nominal embedment depth		h_{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
		[mm]	35	35	55	45	65	55	75
Min. edge distance	C _{min}	[mm]	80						
Min. spacing	S _{min,II} = S _{min, 1}	[mm]	80						
	$\alpha_{g,N}$ ($s_{min,II}$)	[-]	1,65	1,70	1,05	1,15	1,15	1,05	1,65
Croup factors	$\alpha_{g,N}$ ($s_{min,\perp}$)	[-]	1,55	1,70	1,05	1,15	1,20	1,10	1,20
Group factors	$\alpha_{g,V,II}$	[-]	1,55	1,55	1,35	1,15	1,05	1,05	1,35
	$lpha_{\sf g,V,\perp}$	[-]				1,30			

Performances

Solid calcium silicate brick KS – material characteristics, installation parameters, min. edge distance and spacing, group factors

Annex C2

Table 9: Reduction factors depending on the distance to joints

TSM screw size			5	6	8	10	
Distance to injust	Cj⊥	[200.000]	≥35				
Distance to joints	C _{j II}	[mm]	≥80				
Reduction factor			1 (full resistance)				
Distance to initial	$\alpha_{j, \forall II} = \alpha_{j, \forall L}$		<35				
Distance to joints	Сј п	[mm]	<80				
Reduction factor	$\alpha_{\rm j,N}$ [-] Screw must not be u					used	

TOGE concrete screw TSM high performance

Performances

Solid calcium silicate brick KS – installation parameters close to the joints

Table 10: Characteristic resistances

Use category (installation)					(dry or we	et		
TSM screw size			5		6	8	3	1	0
Nominal embedment depth		h _{nom} [mm]	h _{nom1}	h _{nom1}	h _{nom2} 55	h _{nom1} 45	h _{nom2}	h _{nom1} 55	h _{nom2}
Compressive strength f _{mean}	[N/n	nm²]	≥ 26,0						
Characteristic resistance to tension load	N _{Rk}	[kN]	3,5	3,1	4,9	4,1	4,3	3,8	4,5
Characteristic resistance to	V _{Rk,II}	[kN]	5,3	5,3	8,6	6,3	11,3	7,7	13,0
shear load	V _{Rk,,⊥}	[kN]				3,3			
Compressive strength f _{mean}	[N/n	nm²]		≥ 30,0					
Characteristic resistance to tension load	N _{Rk}	[kN]	3,7	3,4	5,3	4,4	4,6	4,0	4,8
Characteristic resistance to	$V_{Rk,II}$	[kN]	5,7	5,7	9,3	6,7	12,1	8,3	13,9
shear load	$V_{Rk,\perp}$	[kN]	3,5						
Compressive strength f _{mean}	[N/n	nm²]				≥ 35,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	4,0	3,7	5,7	4,8	5,0	4,4	5,2
Characteristic resistance to	$V_{Rk,II}$	[kN]	6,1	6,1	10,0	7,3	13,1	8,9	15,0
shear load	$V_{Rk,\perp}$	[kN]				3,8			
Compressive strength f _{mean}	[N/n	nm²]				≥ 38,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	4,2	3,8	6,0	5,0	5,2	4,5	5,4
Characteristic resistance to	$V_{Rk,II}$	[kN]	6,4	6,4	10,4	7,6	13,7	9,3	15,7
shear load	V _{Rk,⊥}	[kN]				4,0			

TOGE concrete screw TSM high performance

Performance

Solid calcium silicate brick KS – characteristic resistances

Table 11: Displacements

Use category (installation)					- 0	dry or w	et		
TSM screw size			5	6			8		0
No weight a web a descript do with		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55	45	65	55	75
Tension load	F _N	[kN]	1,00	0,89	1,40	1,17	1,23	1,09	1,29
Displacement in tension direction	δ_{N0}	[mm]	0,02	0,04	0,04	0,04	0,03	0,02	0,01
	$\delta_{N\infty}$	[mm]	0,03	0,08	0,08	0,07	0,05	0,04	0,03
Shear load parallel to the edge	F _V ,,,	[kN]	1,51	1,51	2,46	1,80	3,23	2,20	3,71
Displacement in shear	δ _{V0,II}	[mm]	0,93	0,09	1,51	0,52	1,00	0,22	0,98
direction parallel to the edge	δνω,ιι	[mm]	1,40	0,13	2,26	0,78	1,50	0,33	1,46
Shear load perpendicular to the edge	F _{V,⊥}	[kN]				0,94			
Displacement in shear direction perpendicular to the edge	$\delta_{\text{V0,L}}$	[mm]		0,22			0,03		0,02
	$\delta_{V\varpi,\perp}$	[mm]		0,33		0,05			0,03

Table 12: Performance under fire exposure for anchor groups

TSM screw size			5		ĵ	
Nominal embedment de	ath.	h_{nom}	h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment de	JUII	[mm]	35	35	55	
Characteristic resistance	to local	brick failure of g	roups under fire	exposure		
Ng	[kN]	R30-R90	0,09 · N ^g _{Rk,b}	0,09 · N ^g _{Rk,b}	0,15 · N ^g _{Rk,b}	
N ^g _{Rk,fi}	[KIN]	R120	0,08 · N ^g _{Rk,b}	0,08 · N ^g _{Rk,b}	$0,12 \cdot N^{g}_{Rk,b}$	
Min. edge distance and	[mm]	$C_{min,fi} = C_{j,fi}$		2 x h _{nom} 1)		
spacing	[mm]	S _{min,fi}	107			

¹⁾ At least the distances set out in Table 13 shall be observed

TOGE concrete screw TSM high performance

Performances
Solid calcium silicate brick KS – displacements and performance under fire exposure for anchor groups

Annex C5

TSM screw size				5	6		
Naminal ambadm	ant danth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedm	ent depth		[mm]	35	35	55	
Steel failure for t	ension and	d shear load					
	R30	N _{Rk,s,fi30}	[kN]	1,10	1,50	1,50	
	R60	N _{Rk,s,fi60}	[kN]	0,80	1,10	1,10	
	R90	N _{Rk,s,fi90}	[kN]	0,50	0,60	0,60	
	R120	N _{Rk,s,fi120}	[kN]	0,30	0,40	0,40	
	R30	V _{Rk,s,fi30}	[kN]	1,10	1,50	1,50	
Characteristic	R60	V _{Rk,s,fi60}	[kN]	0,80	1,10	1,10	
resistance	R90	V _{Rk,s,fi90}	[kN]	0,50	0,60	0,60	
	R120	V _{Rk,s,fi120}	[kN]	0,30	0,40	0,40	
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,80	1,20	1,20	
	R60	M ⁰ Rk,s,fi60	[Nm]	0,50	0,90	0,90	
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,30	0,50	0,50	
	R120	M ⁰ Rk,s,fi120	[Nm]	0,20	0,30	0,30	
Pull-out failure							
	R30	N _{Rk,p,fi30}	[kN]	1,10	0,40	0,72	
Characteristic	R60	N _{Rk,p,fi60}	[kN]	0,80	0,40	0,72	
resistance	R90	N _{Rk,p,fi90}	[kN]	0,50	0,40	0,72	
	R120	N _{Rk,p,fi120}	[kN]	0,30	0,32	0,57	
Breakout failure	•						
Di canoac ianai c	R30	N _{Rk,b,fi30}	[kN]	1,10	0,28	0,79	
Characteristic	R60	N _{Rk,b,fi60}	[kN]	0,80	0,28	0,79	
resistance	R90	N _{Rk,b,fi90}	[kN]	0,50	0,28	0,79	
	R120	N _{Rk,b,fi120}	[kN]	0,30	0,23	0,63	
Edge and joint di	stance	1,5,225		,	,		
Luge and Joint di	Starice	C _{min,fi} =					
R30 - R120		C _{min,fi} –	[mm]	120	120	120	
		C _{j,fi,1}	[mm]	35	35	35	
Spacing		1 11	1 1				
R30 - R120		S _{cr,fi}	[mm]		4 x h _{nom}		

TOGE concrete screw TSM high performance	
Performances Solid calcium silicate brick KS – characteristic resistance under fire exposure	Annex C6

Table 14: Material characteristics Silka XL solid calcium silicate brick KS 12DF

Silka XL solid ca	lcium silicate b	rick KS 12DF acc. to D	IN EN 771-2	2:2015-11
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]
KS - R (P) 20 - 2,0 - 12DF	L: ≥ 498 D: ≥ 175 H: ≥ 248	≥ 14,0	≥ 1,8	175

Table 15: Installation parameters Silka XL solid calcium silicate brick KS 12DF

Use category (installation)			dry or wet						
TSM screw size			5	6		8		10	
Naminal ambadment denth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55	45	65	55	75
Nominal drill hole diameter	d_0	[mm]	5	6	l	8	3	1	0
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,4	6,40 8,45		10,	45	
Drill hole depth	h₀ ≥	[mm]	55	55	75	65	85	75	95
Clearance hole diameter	d _f ≤	[mm]	7	8		12		1	4
Torque for manual	max.	[Nm]	6	10	<u> </u>	2		4	
installation	T _{inst}	נואווון	0	1(<i></i>	25		4	5
Torque for rotary	max.	[Nm]	8	10		No porf	ormanco	200000	1
screwdriver installation	T _{inst}	נואווון	0	10	No performance assessed				
			Max. to	rque acc	ording t	o the ma	nufactur	er's instr	uctions
Impact coroug driver		[Nm]	N	О					
Impact screw driver	$T_{imp,max}$	ן נואווו <u>ן</u>	perfor	mance	185		30	00	
			asse	ssed					

TOGE concrete screw TSM high performance	
Performances Silka XL solid calcium silicate brick KS 12DF – material characteristics, installation parameters	Annex C7

Table 16: Min edge distance, spacing, group factors

TSM screw size			5		6		3	1	0
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedine	nt depth	[mm]	35	35	55	45	65	55	75
Min. edge distance	C _{min}	[mm]				80			
Min. spacing	S _{min,II} = S _{min, ⊥}	[mm]				80			
	α _{g,N} (S _{min II})	[-]	1,65	1,65	1,75	1,40	1,40	1,60	1,30
Croup factors	α _{g,N} (S _{min ⊥})	[-]	1,30	1,30	1,80	1,25	1,25	1,40	1,25
Group factors	$lpha_{\sf g,V,II}$	[-]	2,00	2,00	1,65	2,00	1,65	1,40	1,40
α _{g,V,⊥}		[-]	2,00	2,00	1,45	2,00	1,10	1,40	1,05

Table 17: Reduction factors depending on the distance to joints

TSM screw size	5	6	8	10					
Distance to joints c_{j1} [mm]				≥40					
Distance to joints	joints C _{j II}		≥80						
Reduction factor	$\alpha_{j, N}$	- [-]	1 (full resistance)						
Reduction factor	$\alpha_{j, VII} = \alpha_{j, VL}$	[-]							
Distance to joints	Cj⊥	[mm]		<	40				
Distance to joints	C _{j II}	[mm]		<	80				
Reduction factor	α _{j, N}	[-]	Screw must not be used						

TOGE concrete screw TSM high performance

Performances

Silka XL solid calcium silicate brick KS 12DF – min. edge distance and spacing, group factors group factors and installation parameters close to the joints

Table 18: Characteristic resistances

Use category (installation)			dry or wet						
TSM screw size			5	(5	8	3	1	0
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Compressive strength f _{mean}	[N/n	[]		≥ 14,0					73
Characteristic resistance to tension load	N _{Rk}	[kN]	2,3	2,3	4,1	6,3	6,3	6,4	6,7
Characteristic resistance to	V _{Rk,II}	[kN]	3,2	3,2	9,7	3,2	9,7	17,4	17,4
shear load	$V_{Rk,\perp}$	[kN]	3,6	3,6	8,3	3,6	7,5	5,9	9,8
Compressive strength f _{mean}	[N/n	nm²]				≥ 15,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	2,4	2,4	4,3	6,5	6,5	6,6	6,9
Characteristic resistance to	V _{Rk,II}	[kN]	3,3	3,3	10,1	3,3	10,1	18,0	18,0
shear load	$V_{Rk,\perp}$	[kN]	3,7	3,7	8,6	3,7	7,8	6,1	10,1
Compressive strength f _{mean}	[N/n	nm²]				≥ 20,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	2,8	2,8	4,9	7,5	7,5	7,6	8,0
Characteristic resistance to	$V_{Rk,II}$	[kN]	3,8	3,8	11,7	3,8	11,7	20,8	20,8
shear load	$V_{Rk,\perp}$	[kN]	4,3	4,3	9,9	4,3	9,0	7,0	11,7

TOGE concrete screw TSM high performance

Performances

Silka XL solid calcium silicate brick KS 12DF – characteristic resistances

Table 19: Displacements

Use category (installation)			dry or wet						
TSM screw size			5	5 6 8		3	10		
Nominal embedment depth		h_{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55	45	65	55	75
Tension load	F _N	[kN]	0,66	0,66	1,17	1,80	1,80	1,83	1,91
Displacement in tension	δ_{NO}	[mm]	0,02	0,02	0,04	0,01	0,01	0,01	0,02
direction	$\delta_{N\infty}$	[mm]	0,04	0,04	0,08	0,02	0,02	0,02	0,05
Shear load parallel to the edge	F _V , _{II}	[kN]	0,91	0,91	2,77	0,91	2,77	4,97	4,97
Displacement in shear	δ _{νο,ιι}	[mm]	0,98	0,98	3,00	0,98	3,00	2,95	2,95
direction parallel to the edge	δνω,ιι	[mm]	1,47	1,47	4,50	1,47	4,50	4,42	4,42
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	1,03	1,03	2,37	1,03	2,14	1,69	2,80
Displacement in shear	$\delta_{\text{V0,}\perp}$	[mm]	0,42	0,42	0,03	0,42	1,00	0,05	0,44
direction perpendicular to the edge	$\delta_{V\varpi,\perp}$	[mm]	0,63	0,63	0,05	0,63	1,50	0,08	0,66

Table 20: Performance under fire exposure for anchor groups

TSM screw size			5	5 6		
Nominal embedment de	unical and a durant dant		h _{nom1}	h _{nom1}	h _{nom2}	
Nominai embedinent dej	JUII	[mm]	35	35	55	
Characteristic resistance	to local	brick failure of g	roups under fire	exposure		
NI ^g	[LAN]	R30-R90	0,09 · N ^g _{Rk,b}	0,09 · N ^g _{Rk,b}	$0,15 \cdot N^g_{Rk,b}$	
N ^g _{Rk} ,fi	[kN]	R120	0,08 · N ^g _{Rk,b}	0,08 · N ^g _{Rk,b}	$0,12\cdotN^{g}_{Rk,b}$	
Min. edge distance and	[mm]	$c_{min,fi} = c_{j,fi}$	2 x h _{nom} 1)			
spacing	[mm]	S _{min,fi}	107			

¹⁾ At least the distances set out in Table 21 shall be observed

TOGE concrete screw TSM high performance	
Performances Silka XL solid calcium silicate brick KS 12DF – displacements and performance under fire exposure for anchor groups	Annex C10

SM screw size				5	6	
Naminal ambadm	ant danth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}
Nominal embedm	ent depth		[mm]	35	35	55
Steel failure for t	ension and	shear load				
	R30	N _{Rk,s,fi30}	[kN]	1,10	1,50	1,50
	R60	N _{Rk,s,fi60}	[kN]	0,80	1,10	1,10
	R90	N _{Rk,s,fi90}	[kN]	0,50	0,60	0,60
	R120	N _{Rk,s,fi120}	[kN]	0,30	0,40	0,40
	R30	V _{Rk,s,fi30}	[kN]	1,10	1,50	1,50
Characteristic	R60	V _{Rk,s,fi60}	[kN]	0,80	1,10	1,10
resistance	R90	V _{Rk,s,fi90}	[kN]	0,50	0,60	0,60
	R120	V _{Rk,s,fi120}	[kN]	0,30	0,40	0,40
	R30	M ⁰ Rk,s,fi30	[Nm]	0,80	1,20	1,20
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,50	0,90	0,90
	R90	M ⁰ _{Rk,s,fi90}	[Nm]	0,30	0,50	0,50
	R120	M ⁰ Rk,s,fi120	[Nm]	0,20	0,30	0,30
Pull-out failure						
	R30	N _{Rk,p,fi30}	[kN]	1,10	0,40	0,72
Characteristic	R60	N _{Rk,p,fi60}	[kN]	0,80	0,40	0,72
resistance	R90	N _{Rk,p,fi90}	[kN]	0,50	0,40	0,72
	R120	N _{Rk,p,fi120}	[kN]	0,30	0,32	0,57
Breakout failure						
	R30	N _{Rk,b,fi30}	[kN]	1,10	0,28	0,79
Characteristic	R60	N _{Rk,b,fi60}	[kN]	0,80	0,28	0,79
resistance	R90	N _{Rk,b,fi90}	[kN]	0,50	0,28	0,79
	R120	N _{Rk,b,fi120}	[kN]	0,30	0,23	0,63
Edge and joint di	stance					
<u> </u>		c _{min,fi} =	[mm]	120	120	120
R30 - R120		C _{j,fi,II}				
		C _{j,fi,⊥}	[mm]	35	35	35
Spacing						
R30 - R120		S _{cr,fi}	[mm]		$4 \times h_{nom}$	

TOGE concrete screw TSM high performance	
Performances Perforated calcium silicate brick KSL 3DF - characteristic resistance under fire exposure	Annex C11

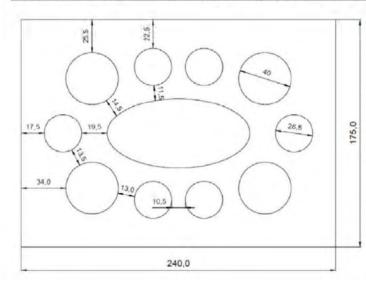
Table 22: Material characteristics perforated calcium silicate brick KSL 3DF

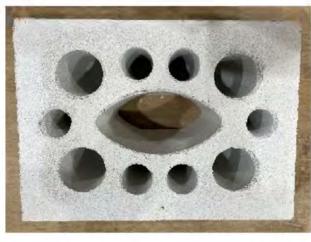
Perforated calcium silicate brick KSL 3DF acc. to DIN EN 771-2:2015-11								
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]				
SWKV KSL 12 - 1,6 - 3DF	L: ≥ 240 D: ≥ 175	≥ 17,0	≥ 1,5	175				

Table 23: Installation parameters perforated calcium silicate brick KSL 3DF

Use category (installation)			dry or wet						
TSM screw size			5	6		8		10	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
		[mm]	35	35	55	45	65	55	75
Nominal drill hole diameter	d_{o}	[mm]	5		6	8	3	1	0
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,40		8,	45	10,	45
Drill hole depth	h₀ ≥	[mm]	55	55	75	65	85	75	95
Clearance hole diameter	d _f ≤	[mm]	7	7 8		12		14	
Torque for manual	max.	[Nm]	3		1		3		1
installation	T_{inst}	נואוון	3	4		9		9	
Torque for rotary	max.	[Nm]	9	11		No performance assessed			
screwdriver installation	T _{inst}	נואווון	9	11		No pend	Jilliance	assesseu	
			Max. to	rque ac	cording t	o the ma	nufactur	er's instr	uctions
Impact screw driver	 T.	[Nm]	No	o					
impact screw driver	ı imp,max	T _{imp,max} [Nm]		performance 10 assessed		200		00	
			asses						

TOGE concrete screw TSM high performance	
Performances Perforated calcium silicate brick KSL 3DF- material characteristics, installation parameters	Annex C12




Table 24: Min. edge distance, spacing, group factors

TSM screw size	TSM screw size				6	8	3	1	0
Naminal ambadma	Name in all and a share at a state		h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedine	Nominal embedment depth [mm]			35	55	45	65	55	75
Min. edge distance	C _{min}	[mm]	m] 58						
Min. spacing	S _{min,II} = S _{min, ⊥}	[mm]	nm] 80						
	$\alpha_{g,N}$ ($s_{min \ II}$)	[-]	2,00	2,00	2,00	1,55	1,55	1,95	1,80
Croup factors	$\alpha_{g,N}$ (Smin \perp)	[-]	2,00	2,00	2,00	1,55	1,55	1,45	1,70
Group factors $\alpha_{g,V}$	$lpha_{g,V,II}$	[-]	2,00	2,00	2,00	2,00	2,00	2,00	2,00
	$lpha_{\sf g,V,\perp}$	_[-]	2,00	1,80	1,80	1,80	1,80	1,30	1,30

Table 25: Reduction factors depending on the distance to joints

TSM screw size		5	6	8	10			
Dinstance to joints	Cj⊥	[mm]	≥35					
Diffstance to joints	C _{j II}	[[[]]]	≥58					
Dadwatian fastan	α _{j, N}	α _{j, N}		4.6.11				
Reduction factor	$\alpha_{j, VII} = \alpha_{j, VL}$	[-]	1 (full resistance)					
Distance to injute	Cj⊥	[]	<35					
Distance to joints	Сj п	[mm]	<58					
Reduction factor	α _{j, N}	[-]	Scre	w must	not be	used		

TOGE concrete screw TSM high performance

Performance

Perforated calcium silicate brick KSL 3DF – min. edge distance and spacing, group factors and installation parameters close to the joints

Table 26: Characteristic resistances

Use category (installation)					C	ry or we	et		
TSM screw size			5 6		8	8		10	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55	45	65	55	75
Compressive strength f_{mean}	[N/n	nm²]				≥ 17,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	1,1	1,1	1,1	1,6	1,6	2,2	2,2
Characteristic resistance to	V _{Rk,II}	[kN]				3,4			
shear load	V _{Rk,⊥}	[kN]	1,6	1,6	1,6	1,6	1,6	2,2	2,2
Compressive strength f _{mean}	[N/n	[N/mm²]		≥ 20,0					
Characteristic resistance to tension load	N _{Rk}	[kN]	1,3	1,3	1,3	1,9	1,9	2,5	2,5
Characteristic resistance to	$V_{Rk,II}$	[kN]	3,8	3,8	3,8	3,8	3,8	3,9	3,9
shear load	$V_{Rk,\perp}$	[kN]	1,8	1,8	1,8	1,8	1,8	2,5	2,5
Compressive strength f _{mean}	[N/n	nm²]				≥ 25,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	1,5	1,5	1,5	2,2	2,2	3,0	3,0
Characteristic resistance to	$V_{Rk,II}$	[kN]	4,5	4,5	4,5	4,5	4,5	4,6	4,6
shear load	V _{Rk,⊥}	[kN]	2,1	2,1	2,1	2,1	2,1	2,9	2,9
Interaction	Х	[-]				1,0			

TOGE concrete screw TSM high performance

Performance

Perforated calcium silicate brick KSL 3DF - Characteristic resistances

Annex C14

Table 27: Displacements

Use category (Installation)					(dry or w	et		
TSM screw size			5	5 6 8		3	10		
Nominal embedment depth		h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Norminal embedment depth		[mm]	35	35	55	45	65	55	75
Tension load	F _N	[kN]	0,31	0,31	0,31	0,46	0,46	0,63	0,63
Displacement in tension	δ_{N0}	[mm]	0,01	0,01	0,01	0,01	0,01	0,01	0,01
direction	$\delta_{N\infty}$	[mm]	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Shear load parallel to the edge	F _{V,II}	[kN]				0,97			
Displacement in shear	δ _{V0,II}	[mm]	0,80	0,80	0,80	0,80	0,80	1,42	1,42
direction parallel to the edge	δνω,ιι	[mm]	1,19	1,19	1,19	1,19	1,19	2,12	2,12
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	0,46	0,46	0,46	0,46	0,46	0,63	0,63
Displacement in shear	δ _{V0,⊥}	[mm]	0,01	0,01	0,01	0,01	0,01	0,01	0,01
direction perpendicular to the edge	$\delta_{V\varpi,\perp}$	[mm]	0,02	0,02	0,02	0,02	0,02	0,02	0,02

Table 28: Performance under fire exposure for anchor groups

TSM screw size			5	5			
Nominal embedment de	h_{nom}	h _{nom1}	h _{nom1}	h _{nom2}			
Nominal embedinent de	JUII	[mm]	[mm] 35 35				
Characteristic resistance	to local	brick failure of g	roups under fire	exposure			
NIG	[LAN]	R30-R90	0,09 · N ^g _{Rk,b}	0,09 · N ^g _{Rk,b}	0,15 · N ^g _{Rk,b}		
N ^g _{Rk,fi}	[kN]	R120	0,08 · N ^g _{Rk,b}	$0.08 \cdot N^{g}_{Rk,b}$ $0.08 \cdot N^{g}_{Rk,b}$ $0.12 \cdot$			
Min. edge distance and	in. edge distance and		2 x h _{nom} 1)				
spacing	[mm]	S _{min,fi}	107				

¹⁾ At least the distances set out in Table 29 shall be observed

TOGE concrete screw TSM high performance

Performances
Perforated calcium silicate brick KSL 3DF – displacements and performance under fire exposure for anchor groups

Annex C15

SM screw size				5	6	5
Naminal ambodm	ant donth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}
Nominal embedm	ent depth		[mm]	35	35	55
Steel failure for t	ension and	d shear load	 			
	R30	N _{Rk,s,fi30}	[kN]	0,70	1,00	1,00
	R60	N _{Rk,s,fi60}	[kN]	0,60	0,80	0,80
	R90	N _{Rk,s,fi90}	[kN]	0,40	0,50	0,50
	R120	N _{Rk,s,fi120}	[kN]	0,30	0,40	0,40
	R30	V _{Rk,s,fi30}	[kN]	0,70	1,00	1,00
Characteristic	R60	V _{Rk,s,fi60}	[kN]	0,60	0,80	0,80
resistance	R90	V _{Rk,s,fi90}	[kN]	0,40	0,50	0,50
	R120	V _{Rk,s,fi120}	[kN]	0,30	0,40	0,40
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,50	0,80	0,80
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,40	0,60	0,60
	R90	M ⁰ Rk,s,fi90	[Nm]	0,20	0,40	0,40
	R120	M ⁰ Rk,s,fi120	[Nm]	0,20	0,30	0,30
Pull-out failure						
	R30	N _{Rk,p,fi30}	[kN]	0,70	0,19	0,19
Characteristic	R60	N _{Rk,p,fi60}	[kN]	0,60	0,19	0,19
resistance	R90	N _{Rk,p,fi90}	[kN]	0,40	0,19	0,19
	R120	N _{Rk,p,fi120}	[kN]	0,30	0,15	0,15
Breakout failure						
	R30	N _{Rk,b,fi30}	[kN]	0,70	0,13	0,21
Characteristic	R60	N _{Rk,b,fi60}	[kN]	0,60	0,13	0,21
resistance	R90	N _{Rk,b,fi90}	[kN]	0,40	0,13	0,21
	R120	N _{Rk,b,fi120}	[kN]	0,30	0,11	0,17
Edge and joint di	istance					
R30 - R120		C _{min,fi} = C _{j,fi,II}	[mm]	101	101	101
		Cj,fi,⊥	[mm]	56	56	56
Spacing				•		
R30 - R120		S _{cr,fi}	[mm]		4 x h _{nom}	

TOGE concrete screw TSM high performance	
Performances Perforated calcium silicate brick KSL 3DF – characteristic resistance under fire exposure	Annex C16

Table 30: Material characteristic solid clay brick MZ

Solid clay brick	MZ acc. to D	IN EN 771-1:2015-11		
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]
MZ 20 - 2,0 - NF	L: ≥ 240 D: ≥ 115 H: ≥ 71	≥ 21,0	≥ 2,1	240

Table 31: Installation parameters solid clay brick MZ

Use category (installation)	Use category (installation)				dry or wet						
TSM screw size	TSM screw size			(5	8		10			
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}		
Normal embedment depth		[mm]	35	35	55	45	65	55	75		
Nominal drill hole diameter	d ₀	[mm]	5	(5	8	3	1	0		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,	40	8,	45	10,	45		
Drill hole depth	h₀ ≥	[mm]	55	55	75	65	85	75	95		
Clearance hole diameter	d _f ≤	[mm]	7	8	3	12		1	4		
Torque for manual	max.	[Nm]	2		3	1	c	2	,		
installation	T _{inst}	נואווון	2	,	•	1	6		5		
Torque for rotary	l max.							N	o		
screwdriver installation	T _{inst}	[Nm]	4	١	9	1	4	perfori	mance		
serewarrer mstandion	inst					asse	ssed				
			N	lax. torc	lue acco	rding to t	the manu	ıfacturer'	s		
Impact screw drvier	T _{imp,max}	[Nm]	[Nm] instructions								
				No perfo	rmance	assessed	ł	18	35		

TOGE concrete screw TSM high performance	
Performances Solid clay brick MZ – material characteristic, installation parameters	Annex C17

Table 32: Min. edge distance, spacing, group factors

TSM screw size			5		6	3	3	1	0
Naminal ambadma	nt donth	h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedme	πι αεριπ	[mm]	35	35	55	45	65	55	75
Min. edge distance	C _{min}	[mm]				80			
Min. spacing	S _{min,II} = S _{min, 1}	[mm]				80			
	$\alpha_{g,N}$ ($s_{min II}$)	[-]	1,60	1,60	1,60	1,00	1,00	1,70	1,10
Croup footors	$\alpha_{g,N}$ (Smin 1)	[-]	1,75	1,75	1,75	1,15	1,15	1,45	1,40
Group factors	$lpha_{g,V,II}$	[-]	1,45	1,45	1,45	1,45	1,45	2,00	1,05
- J	$\alpha_{g,V,\perp}$	[-]	1,20	1,20	1,20	1,20	1,20	1,50	1,15

Table 33: Reduction factors depending on the distance to joints

TSM screw size	5	6	8	10		
Distance to joints	Cj⊥	[mm]		≥3	35	
Distance to joints	C _{j II}	[mm]		≥8	30	
Reduction factor	α _{j, N}	[-]	1	(full ro	sistance	7)
Reduction factor	$\alpha_{j, VII} = \alpha_{j, VL}$	[-]	1	. (Tull Te	Sistarice	-)
Distance to injusts	Cj⊥	[mama]		<3	35	
Distance to joints	C _{j II}	[mm]		<8	30	
Reduction factor	α _{j, N}	[-]	-] Screw must not be used			used

TOGE concrete screw TSM high performance

Performances

Solid clay brick $MZ-\min$ edge distance, spacing, group factors and installation parameters close to the joints

	2 4	01			
ahla	4/1.	har	acteristi	C rocicts	ncac
apic	27.	CHai	acteristi	C 1 C 3 1 3 C C	111663

Use category (installation)				dry or wet					
TSM screw size		-	5	(5	8	3	1	0
Nominal embedment depth		h _{nom} [mm]	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1} 45	h _{nom2} 65	h _{nom1}	h _{nom2}
Compressive strength f _{mean}	[N/n	nm²]				≥ 21,0			•
Characteristic resistance to tension load	N _{Rk}	[kN]	1,6	1,6	1,6	2,3	2,3	3,1	3,2
Characteristic resistance to	$V_{Rk,II}$	[kN]	2,5	2,5	2,5	2,5	2,5	2,6	8,1
shear load	$V_{Rk,\perp}$	[kN]	2,1	2,1	2,1	2,1	2,1	2,1	2,7
Compressive strength f _{mean}	[N/n	nm²]				≥ 25,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	1,7	1,7	1,7	2,5	2,5	3,4	3,5
Characteristic resistance to	$V_{Rk,II}$	[kN]	2,7	2,7	2,7	2,7	2,7	2,8	8,9
shear load	V _{Rk,⊥}	[kN]	2,3	2,3	2,3	2,3	2,3	2,3	3,0
Compressive strength f _{mean}	[N/n	nm²]	≥ 30,0						
Characteristic resistance to tension load	N _{Rk}	[kN]	1,9	1,9	1,9	2,8	2,8	3,7	3,8
Characteristic resistance to	$V_{Rk,II}$	[kN]	2,9	2,9	2,9	2,9	2,9	3,1	9,7
shear load	$V_{Rk,\perp}$	[kN]	2,5	2,5	2,5	2,5	2,5	2,5	3,2
Compressive strength f _{mean}	[N/n	[N/mm²]				≥ 31,0			
Characteristic resistance to tension load	N _{Rk}	[kN]	1,9	1,9	1,9	2,8	2,8	3,8	3,9
Characteristic resistance to	V _{Rk,,II}	[kN]	3,0	3,0	3,0	3,0	3,0	3,2	9,9
shear load	$V_{Rk,,\perp}$	[kN]	2,5	2,5	2,5	2,5	2,5	2,6	3,3

TOGE concrete screw TSM high performance

Performances

Solid clay brick MZ – characteristic resistances

Annex C19

Table 35: Displacements

Use category (installation)			dry or wet						
TSM screw size			5 6		8	3	10		
Nominal embedment depth		h _{nom}	h_{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55	45	65	55	75
Tension load	F _N	[kN]	0,46	0,46	0,46	0,66	0,66	0,89	0,91
Displacement in tension	δ_{NO}	[mm]	0,01	0,01	0,01	0,01	0,01	0,03	0,02
direction	$\delta_{N\infty}$	[mm]	0,02	0,02	0,02	0,02	0,02	0,05	0,05
Shear load parallel to the edge	F _{V,II}	[kN]	0,71	0,71	0,71	0,71	0,71	0,74	2,31
Displacement in shear	δ _{νο,ιι}	[mm]	1,08	1,08	1,08	1,08	1,08	0,04	2,24
direction parallel to the edge	$\delta_{V\infty,II}$	[mm]	1,61	1,61	1,61	1,61	1,61	0,07	3,36
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	0,60	0,60	0,60	0,60	0,60	0,60	0,77
Displacement in shear δ_{V0}		[mm]	1,13	1,13	1,13	1,13	1,13	0,03	0,34
direction perpendicular to the edge	$\delta_{\text{V}\varpi,\perp}$	[mm]	1,69	1,69	1,69	1,69	1,69	0,04	0,51

Table 36: Performance under fire exposure for anchor groups

TSM screw size			5	6				
Nominal embedment de	Name in all a such a discount of a subh			h _{nom1}	h _{nom2}			
Nominal embedment de	JUII	[mm]	35	35	55			
Characteristic resistance	local bri	ck failure of gro	ups under fire ex	posure				
NIS	[kN]	R30-R90 0,09 · N ^g _{Rk,b}		0,09 · N ^g _{Rk,b}	$0.15 \cdot N^{g}_{Rk,b}$			
N ^g _{Rk} ,fi	[KIN]	R120	0,08 · N ^g _{Rk,b}	0,08 · N ^g _{Rk,b}	$0,12 \cdot N^{g}_{Rk,b}$			
Min. edge distance and	[mm]	$c_{min,fi} = c_{j,fi}$	2 x h _{nom} 1)					
spacing	[mm]	S _{min,fi}		107				

¹⁾ At least the distances set out in Table 37 shall be observed

TOGE concrete screw TSM high performance	
Performances Solid clay brick MZ – displacements and performance under fire exposure for anchor groups	Annex C20

SM screw size				5	6	
Name in all and bading			h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}
Nominal embedm	ent depth		[mm]	35	35	55
Steel failure for t	ension and	shear load				
	R30	N _{Rk,s,fi30}	[kN]	1,10	1,50	1,50
	R60	N _{Rk,s,fi60}	[kN]	0,80	1,10	1,10
	R90	N _{Rk,s,fi90}	[kN]	0,50	0,60	0,60
	R120	N _{Rk,s,fi120}	[kN]	0,30	0,40	0,40
	R30	V _{Rk,s,fi30}	[kN]	1,10	1,50	1,50
Characteristic	R60	V _{Rk,s,fi60}	[kN]	0,80	1,10	1,10
resistance	R90	V _{Rk,s,fi90}	[kN]	0,50	0,60	0,60
	R120	V _{Rk,s,fi120}	[kN]	0,30	0,40	0,40
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,80	1,20	1,20
	R60	M ⁰ _{Rk,s,fi60}	[Nm]	0,50	0,90	0,90
	R90	M ⁰ Rk,s,fi90	[Nm]	0,30	0,50	0,50
	R120	M ⁰ Rk,s,fi120	[Nm]	0,20	0,30	0,30
Pull-out failure						
	R30	N _{Rk,p,fi30}	[kN]	1,10	0,28	0,28
Characteristic	R60	N _{Rk,p,fi60}	[kN]	0,80	0,28	0,28
resistance	R90	N _{Rk,p,fi90}	[kN]	0,50	0,28	0,28
	R120	N _{Rk,p,fi120}	[kN]	0,30	0,22	0,22
Breakout failure						
	R30	N _{Rk,b,fi30}	[kN]	1,10	0,20	0,31
Characteristic	R60	N _{Rk,b,fi60}	[kN]	0,80	0,20	0,31
resistance	R90	N _{Rk,b,fi90}	[kN]	0,50	0,20	0,31
	R120	N _{Rk,b,fi120}	[kN]	0,30	0,16	0,25
Edge and joint di	istance			,		
		C _{min,fi} =	[mm]	120	120	120
R30 - R120		C _{j,fi,II}	[[[[]]]	120	120	
		Cj,fi,⊥	[mm]	35	35	35
Spacing						
R30 - R120		S _{cr,fi}	[mm]		$4 \times h_{nom}$	

TOGE concrete screw TSM high performance	
Performances Solid clay brick MZ – characteristic resistance under fire exposure	Annex C21

Table 38: Material characteristic solid light concrete brick VBL

Solid light cond	rete brick VBL	acc. to DIN EN 771-3	3:2015-11		
Nomenclature	Dimensions [mm]	Mean compressive strength [N/mm²]	Bulk density [kg/dm³]	Min. wall thickness h _{min} [mm]	
VBL 4 - 1,0 - 2DF	L: ≥ 240 D: ≥ 115 H: ≥ 113	≥ 4,0	≥ 1,5	240	

Table 39: Installation parameters solid light concrete brick VBL

Use category (installatio	dry			
TSM screw size	8	10		
Nominal embedment depth		h _{nom} [mm]	h _{nom} 65	h _{nom} 75
Nominal drill hole diameter	d ₀	[mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45
Drill hole depth	h₀ ≥	[mm]	85	95
Clearance hole diameter	d _f ≤	[mm]	12	14
Torque for manual installation	max. T _{inst}	[Nm]	6	5
Torque for rotary screwdriver installation	max. T _{inst}	[Nm]	10	14

Table 40: Min. edge distance, spacing, group factors

TSM screw size	8	10			
Naminal ambadma	h _{nom}	h _{nom}	h _{nom}		
Nominal embedment depth		[mm]	65	75	
Min. edge distance	C _{min}	[mm]	80		
Min. spacing	S _{min,II} = S _{min, ⊥}	[mm]	80		
Group factors	$\alpha_{g,N}$ (Smin II)	[-]	1,45	1,45	
	$\alpha_{g,N} (s_{min \perp})$	[-]	1,35	1,35	
	$\alpha_{g,V,II}$	[-]	0,90	0,90	
	α _{g,V, ⊥}	[-]	0,75	0,75	

TOGE concrete screw TSM high performance
--

Performances

Solid light concrete brick – material characteristics, installation parameters, min. edge distance and spacing, group factors

Annex C22

Table 41: Reduction factors depending on the distance to joints

TSM screw size	8	10		
Distance to injusts	C _{j ⊥}	[≥3	35
Distance to joints	C _{j II}	[mm]	≥8	30
Reduction factor	$\alpha_{j, N}$ $\alpha_{j, VII} = \alpha_{j, VL}$	[-]	1 (full resistance)	
Distance to injusts	C _{j ⊥}	[na na]	3	5
Distance to joints	C _{j II}	[mm]	80	
Reduction factor	α _{j, N}	[-]	Screw mu us	

Table 42: Characteristic resistances

Use category (installation)	dry			
TSM screw size			8	10
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}
Nominal embedment depth	[mm]	65	75	
Compressive strength f _{mean}	[N/r	nm²]	≥ ∠	1,0
Characteristic tension load	N_{Rk}	[kN]	0,6	1,2
Characteristic shear load	$V_{Rk,II}$	[kN]	4,0	5,1
Characteristic shear load	$V_{Rk,\perp}$	[kN]	2,3	3,3
Compressive strength f _{mean}	[N/mm²]		≥ 5,0	
Characteristic resistance to tension load	N _{Rk}	[kN]	0,7	1,4
Characteristic resistance to	V _{Rk,II}	[kN]	4,4	5,7
shear load	V _{Rk,⊥}	[kN]	2,6	3,7

TOGE concrete screw TSM high performance	
--	--

Performances

Solid light concrete brick – characteristic resistances and installation parameters close to the joints

Table 43: Displacements

Use category (installation)	dry			
TSM screw size			8	10
Nominal embedment depth		h _{nom}	h _{nom}	h _{nom}
		[mm]	65	75
Tension load	F _N	[kN]	0,17	0,34
Displacement in tension direction	δ_{NO}	[mm]	0,01	0,01
Displacement in tension direction	$\delta_{N\varpi}$	[mm]	0,02	0,02
Shear load parallel to the edge	F _{V,II}	[kN]	1,14	1,46
Displacement in shear direction	δ _{V0,II}	[mm]	1,94	2,11
parallel to the edge	$\delta_{V\varpi,II}$	[mm]	2,92	3,16
Shear load perpendicular to the edge	F _{V,⊥}	[kN]	0,66	0,94
Displacement in shear direction	$\delta_{V0,\perp}$	[mm]	0,36	1,92
perpendicular to the edge	$\delta_{V\varpi,\perp}$	[mm]	0,54	2,89

TOGE concrete screw TSM high performance

Performances

Solid light concrete brick - displacements

Annex C24