

TOGE TSM BC

Shear-Connector Fast and economical solution for the rehabilitation of structures

Approval

Approved by building authorities as shearconnector.

Accessories

Hole corrugation disc optionally serves to support or tie the rebars.

Installation Fast and safe installation.

Force Transmission

Transmission of forces in existing concrete by undercutting technique.

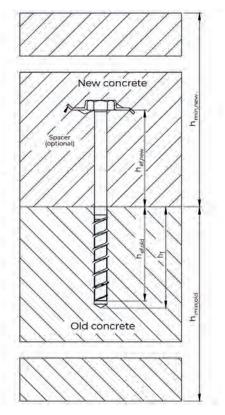
Transmission of forces in the new concrete via shear studs.

Approval

Approval

General type approval / General technical approval Z-21.1-1799.

General type approval / General technical approval Z-21.1-1880.


Base Material

Application in cracked and non-cracked concrete of strength classes from C20/25 to C50/60.

Technical Characteristics

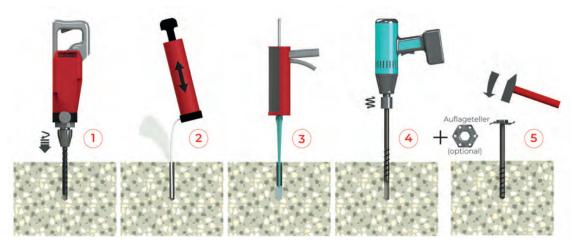
Processing in existing concrete

Ankergröße			TSM BC 12
			13141 BC 12
Nominal diameter of drill bit	d _o	[mm]	12
Depth of drill hole	h, ≥	[mm]	110
Embedment depth of anchor	h _{nom}	[mm]	100
Effective anchorage depth	h _{ef} ≥	[mm]	80
Minimum edge distance	C _{min} ≥	[mm]	80
Minimum spacing	S _{min} ≥	[mm]	80
Minimum base material thickness	h _{min} ≥	[mm]	150
Characteristic edge distance	C _{cr, N}	[mm]	120
Characteristic spacing	S _{cr, N}	[mm]	240
Design value of tension load in cracked concrete C 20/25 $^{1 m (3)}$	N _{Rd}	[kN]	17,2
Design value of tension load in non-cracked concrete C 20/25 $^{1\!$	N _{Rd}	[kN]	23,9
Design value of shear load in cracked and non-cracked concrete C 20/25 bis C 50/60 $^{1\!\!13\!\!1}$	V _{Rd}	[kN]	28,0
Permissible tension load in cracked concrete C 20/25 ^{2) 3)}	N _{per}	[kN]	12,3
Permissible tension load in non-cracked concrete C 20/25 $^{2(3)}$	N _{per}	[kN]	17,1
Permissible shear load in cracked and non-cracked concrete C 20/25 bis C 50/60 $^{\rm 2)3)}$	V _{per}	[kN]	20,0

¹⁾ For the determination of the design value the partial safety factor from the approval $\gamma_M = 1,5$ was considered. ²⁾ For the determination of the load action the partial safety factor from the approval $\gamma_M = 1,5$ for material resistance and $\gamma_F = 1,4$ for load actions were considered. ³⁾ The specified values apply regardless of center distances and edge distances.

Technical Characteristics

Processing in new concrete


Ankergröße			TSM BC 12
Effective anchorage depth	h _{ef, new}	[mm]	40 - 120
Minimum edge distance	C _{min} ≥	[mm]	0,5 x h _{ef, new}
Minimum spacing	S _{min} ≥	[mm]	80
Minimum base material thickness	h _{min}	[mm]	h _{ef} + concrete cover
Characteristic edge distance	C _{cr, N}	[mm]	1,5 x h _{ef, new}
Characteristic spacing	S _{cr, N}	[mm]	3 x h _{ef, new}
Design value of tension load in cracked concrete C 20/25 $^{1)3}$	N _{Rd, min}	[kN]	7,1
	N _{Rd, max}		17,6
Design value of tension load in non-cracked concrete C 20/25 1133	N _{Rd, min}	[kN]	10,1
	N _{Rd, max}		24,8
Design value of shear load in cracked and non-cracked concrete C 20/25 bis C 50/60 $^{1\!\!13\!\!1}$	V _{Rd}	[kN]	32,6
Permissible tension load in cracked concrete C 20/25 ^{2) 3)}	N _{zul, min}	[kN]	5,1
	N _{Zul, max}		12,6
Permissible tension load in non-cracked concrete C 20/25 ^{2] 3)}	N _{Zul, min}	[kN]	7,2
	N _{Zul, max}		17,7
Permissible shear load in cracked and non-cracked concrete C 20/25 bis C 50/60 $^{\mbox{$2/3$}}$	V _{per}	[kN]	23,3

¹⁾ For the determination of the design value the partial safety factor from the approval $\gamma_{M} = 1,5$ was considered. ²⁾ For the determination of the load action the partial safety factor from the approval $\gamma_{M} = 1,5$ for material resistance and $\gamma_{F} = 1,4$ for load actions were conside-

red. ^{3]} The specified values apply regardless of center distances and edge distances.

Installation Instructions

- 1) Create borehole.
- 2) Clean the borehole thoroughly.
- 3) Discard three full strokes of composite mortar then inject composite mortar (optional).
- 4) Screw in concrete screw.
- 5) Hammer spacer onto screw head (optional).