

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6496 of 15/11/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	TSM high performance, TSM high performance A4, TSM high performance HCR
Product family to which the construction product belongs:	Fasteners for use in concrete for redundant non- structural systems
Manufacturer:	TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg DEUTSCHLAND
Manufacturing plant(s):	TOGE Dübel GmbH & Co. KG
This UK Technical Assessment contains:	17 pages including 3 annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330747-00-0601 Fasteners for use in concrete in redundant for non-structural systems

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1 Technical description of the product

The TOGE concrete screw TSM high performance of sizes 5 and 6 mm is an anchor made of galvanized steel respectively steel with zinc flake coating and of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this UK Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Not relevant.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

3.3 Health, hygiene and the environment (BWR 3)

Not relevant.

3.4 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex C 1 and C 2
(Static and quasi-static loading)	
Characteristic resistance to shear load	See Annex C 1 and C 2
(Static and quasi-static loading)	

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

No performance assessed.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1 System of assessment and verification of constancy of performance

According to UKAD No. 330747-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 2+ applies.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1 UKCA marking for the product/ system must contain the following information:

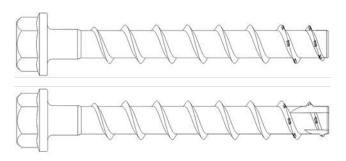
- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance (where applicable)
- UKTA number.

On behalf of the British Board of Agrément

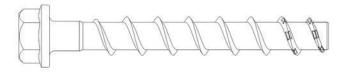
Date of Issue: 15 November 2022

Hardy Giesler Chief Executive Officer

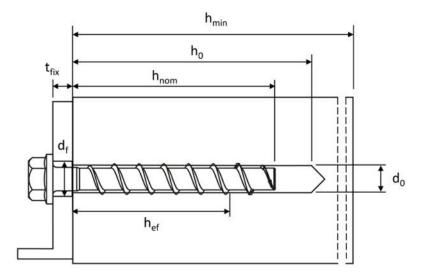
British Board of Agrément, 1st Floor Building 3,


1st Floor Building 3 Hatters Lane, Croxley Park Watford WD18 8YG

ANNEX A1 Product description, Product in installed condition


This annex applies to the product described in the main body of the UK Technical Assessment.

TOGE concrete screw TSM high performance (TSM 5 and TSM 6)


Galvanized carbon steelZinc flakes coated carbon steel

Stainless steel A4Stainless steel HCR

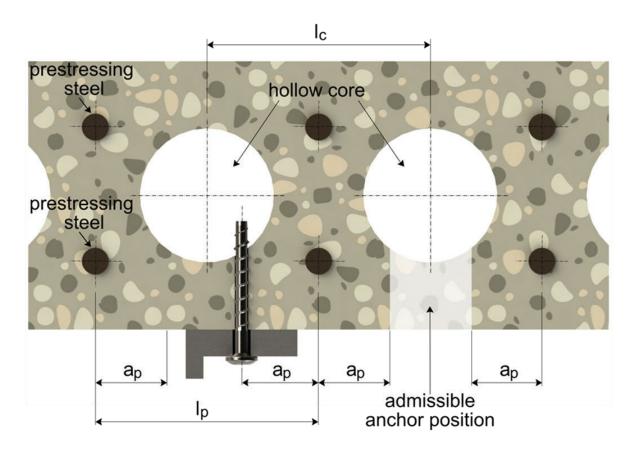
e.g. TOGE concrete screw, zinc flakes coated, with hexagon head and fixture

 d_0 = nominal drill hole diameter

 t_{fix} = thickness of fixture

d_f = clearance hole diameter

h_{min} = minimum thickness of member


h_{nom} = nominal embedment depth

 h_0 = drill hole depth

h_{ef} = effective embedment depth

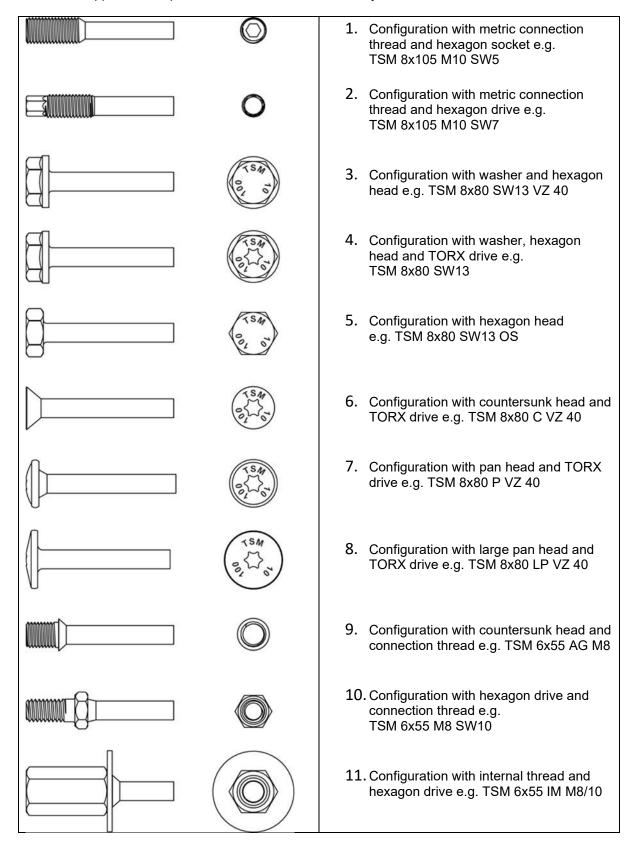
ANNEX A2 Product description, Installed condition in precast prestressed hollow core slabs

This annex applies to the product described in the main body of the UK Technical Assessment.

Important ratio: $\frac{w}{e} \le 4, 2$

w = core width

e = web thickness


I_c = core distance ≥ 100 mm

I_p = prestressing steel ≥ 100 mm

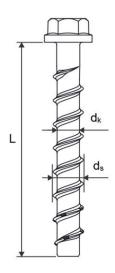
 a_p = distance between anchor position and prestressing steel ≥ 50 mm

ANNEX A3 Product description, Screw types

This annex applies to the product described in the main body of the UK Technical Assessment.

ANNEX A4 Product description, Material Dimensions and markings

This annex applies to the product described in the main body of the UK Technical Assessment.


Table 1: Material

Part	Product name	Material			
all	- Steel BS EN 10263-4:2017 galvanized acc. to BS EN ISO 4042:2018 - Zinc flake coating according to BS EN ISO 10683:2018 (
types	TSM high performance A4	1.4401; 1.4404; 1.4571; 1.4578			
	TSM high performance HCR	1.4529			

		Nominal chara	Duntum alamentian	
Part	Product name	rame Yield strength f _{yk} [N.mm ⁻²]		Rupture elongation A₅ [%]
	TSM high performance			
all types	TSM high performance A4	560	700	≤ 8
,,,,,,,	TSM high performance HCR			

Table 2: Dimensions

Anchor size			TSM 5 TSM 6			
Screw length	≤L	[mm]	2	200		
Core diameter	dk	[mm]	4.0	5.1		
Thread outer diameter	ds	[mm]	6.5	7.5		

Marking:

TSM high performance		TSM high performance A4		TSM high performance HCR		Marking "k" or "x"
Screw type: Screw size: Screw length:	TSM 10 100	Screw type: Screw size: Screw length: Material:	TSM 10 100 A4	Screw type: Screw size: Screw length: Material:	TSM 10 100 HCR	for anchors with connection thread and h _{nom} = 35mm
TSM		TSM TOOL		TSM CO F 00V		

ANNEX B1 Intended use, Specification

This annex applies to the product described in the main body of the UK Technical Assessment.

Anchorages subject to:

- Static and quasi static loads
- Used only for multiple use for non-structural application according to BS EN 1992-4:2018
- Used for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs): size 6
- Used for anchorages in prestressed hollow core slabs: size 6

Base materials:

- Compacted reinforced and compacted unreinforced concrete without fibers according to BS EN 206:2013.
- Strength classes C20/25 to C50/60 according to BS EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR.
 Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to BS EN 1992-4:2018.
- The design for shear load according to BS EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B2, Table 3.

Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.

ANNEX B2 Intended use, Installation parameters

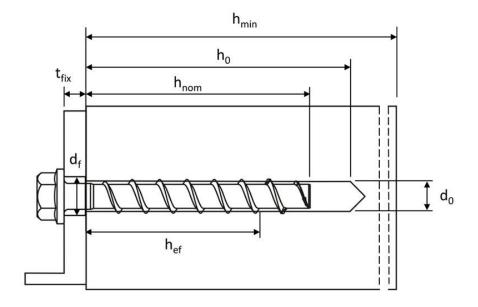
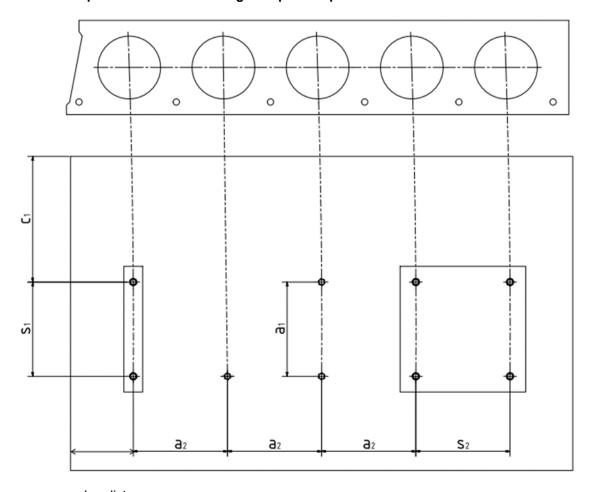

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 3: Installation parameters

TSM concrete screw size	TSM 5	TSM 6			
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55
Nominal drill hole diameter	d_0	[mm]	5	(6
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6.40	
Drill hole depth h ₀ ≥		[mm]	40	40	60
Clearance hole diameter	Clearance hole diameter d _f ≤		7	8	
Installation torque (version with connection thread) T _{inst} ≤		[Nm]	8	10	
Recommended torque impact		[MIm]	Max. tord	que according to n instructions	nanufacturer's
screwdriver		[Nm]	110	16	60

Table 4: Minimum thickness of member, minimum edge distance and minimum spacing


TSM concrete screw size			TSM 5	TSM 6		
Name in all and a durant dants		h _{nom1}	h _{nom1}	h _{nom1}	h _{nom2}	
Nominai embedment dept	minal embedment depth		35	35	55	
Minimum thickness of member	h _{min}	[mm]	80	80	100	
Minimum edge distance	Cmin	[mm]	35	35	40	
Minimum spacing	Smin	[mm]	35	35	40	

ANNEX B3 Intended use, Installation parameters for anchorages in precast prestressed hollow slabs

This annex applies to the product described in the main body of the UK Technical Assessment.

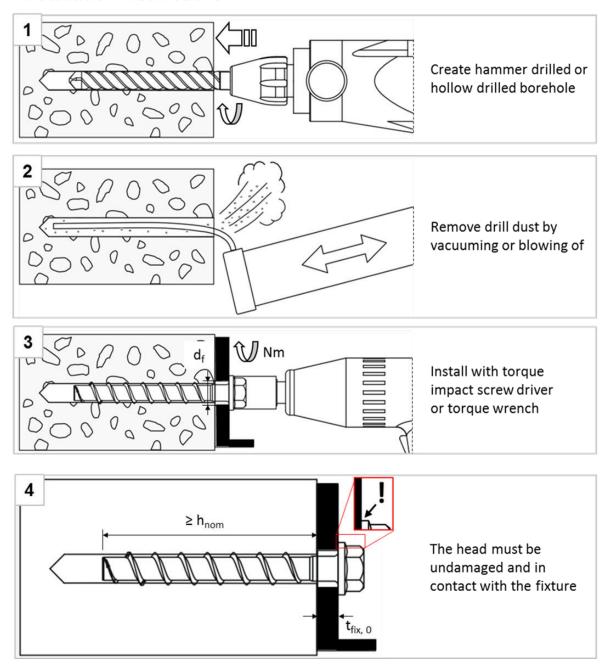
Installation parameters for anchorages in precast prestressed hollow core slabs

 c_1, c_2 = edge distance

 s_1, s_2 = anchor spacing

 a_1 , a_2 = distance between anchor groups

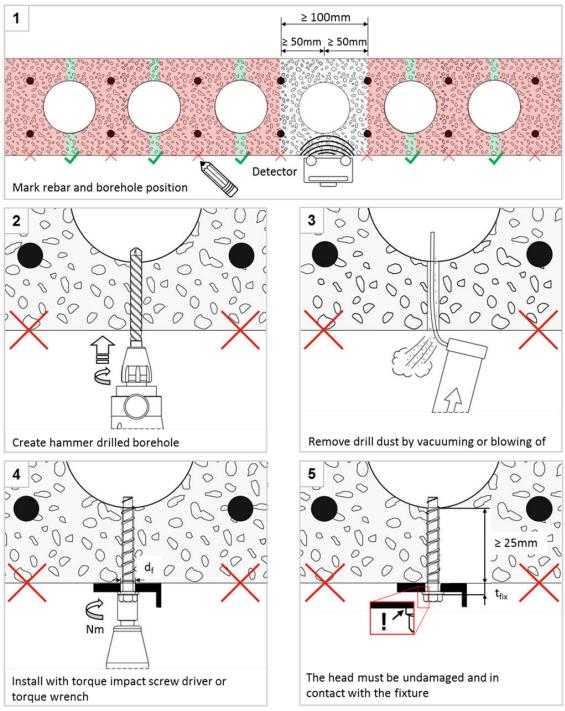
c_{min} = minimum edge distance ≥ 100 mm


 s_{min} = minimum anchor spacing $\ge 100 \text{ mm}$

a_{min} = minimum distance between anchor groups ≥ 100 mm

ANNEX B4 Intended use, Installation instructions

This annex applies to the product described in the main body of the UK Technical Assessment.


Installation Instructions

ANNEX B5 Intended use, Installation instructions for anchorages in prepressed hollow slabs

This annex applies to the product described in the main body of the UK Technical Assessment.

Installation Instructions for anchorages in prestressed hollow slabs

ANNEX C1 Performances, Characteristic values for static and quasi-static loading

This annex applies to the product described in the main body of the UK Technical Assessment.

TSM concrete	screw size			TSM 5	TS	M 6
Nominal embe	dmont donth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}
Norminal embe	ишетт чертт		[mm]	35	35	55
Steel failure fo	or tension and s	hear loa	ding			
Characteristic	tension load	N _{Rk,s}	[kN]	8.7	14	1.0
Partial factor		Y Ms,N	[-]		1.5	
Characteristic	shear load	$V_{\text{Rk,s}}$	[kN]	4.4	7	.0
Partial factor		Y Ms,∨	[-]		1.25	
Ductility factor		k ₇	[-]		0.8	
Characteristic l	bending load	M ⁰ Rk,s	[Nm]	5.3	10).9
Pull-out failur	e					
Characteristic	cracked	$N_{Rk,p}$	[kN]	1.5	3.0	7.5
tension load C20/25	uncracked	$N_{Rk,p}$	[kN]	1.5	3.0	7.5
Increasing	C25/30	Ψ _c			1.12	•
ncreasing factor for	C30/37		[-]		1.22	
N _{Rk,p}	C40/50		.,		1.41	
	C50/60				1.58	
Concrete failu	re: Splitting fail	ure, con	crete co	ne failure and p	ry-out failure	Г
Effective embe	dment depth	h _{ef}	[mm]	27	27	44
k-factor	cracked	$k_1 = k_{cr}$	[-]		7.7	
K-Iactoi	uncracked	$k_1 = k_{ucr}$	[-]		11.0	
Concrete	spacing	S _{cr,N}	[mm]		3 x h _{ef}	
cone failure	edge distance	C _{cr,N}	[mm]		1.5 x h _{ef}	
	resistance	N^0 Rk,Sp	[kN]	r	$\min(N^0_{Rk,c}; N_{Rk,p})$	
Splitting failure	spacing	S _{cr,Sp}	[mm]	120	120	160
	edge distance	Ccr,Sp	[mm]	60	60	80
Factor for pry-out failure		k ₈	[-]		1.0	
Installation factor		γinst	[-]	1.2	1.0	1.0
Concrete edge	e failure					
Effective length in concrete		I _f = h _{ef}	[mm]	27	27	44
Nominal outer diameter of screw						

ANNEX C2 Performances,

Characteristic values and limiting distances in precast prestressed hollow core slabs

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 6: Characteristic values of resistance in precast prestressed hollow core slabs C30/37 to C50/60

TSM concrete screw size				TSM 6	
Bottom flange thickness	d _b	[mm]	≥ 25	≥ 30	≥ 35
Characteristic resistance	F ⁰ Rk	[kN]	1	2	3
Installation factor	γinst	[-]		1.0	

Table 7: Limiting distances for application in precast prestressed hollow core slabs

Distances for application in precast prestressed hollow core slabs					
Minimum edge distance	Cmin	[mm]	≥ 100		
Minimum anchor spacing	Smin	[mm]	≥ 100		
Minimum distance between anchor groups	a _{min}	[mm]	≥ 100		
Distance of core	lc	[mm]	≥ 100		
Distance of prestressing steel	Ιp	[mm]	≥ 100		
Distance between anchor position and prestressing steel	ap	[mm]	≥ 50		

ANNEX C3 Performances, Characteristic values under fire exposure

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 8: Fire exposure – characteristic values of resistance 1)

TSM concrete screw size				TSM 6			
Material				TSM high performance		TSM high performance A4/HCR	
Nominal embedment depth			h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}
			[mm]	35	55	35	55
Steel failure for tension and shear load ($F_{Rk,s,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}$)							
Characteristic Resistance	R30	F _{Rk,s,fi30}	[kN]	0.9		1.2	
	R60	F _{Rk,s,fi60}	[kN]	0.8		1.2	
	R90	F _{Rk,s,fi90}	[kN]	0.6		1.2	
	R120	F _{Rk,s,fi120}	[kN]	0.4		0.8	
	R30	M ⁰ Rk,s,fi30	[Nm]	0.7		0.9	
	R60	M ⁰ Rk,s,fi60	[Nm]	0.6		0.9	
	R90	$M^0_{Rk,s,fi90}$	[Nm]	0.5		0.9	
	R120	M ⁰ Rk,s,fi120	[Nm]	0.3		0.6	
Pull-out failure							
Characteristic Resistance	R30-R90	$N_{Rk,p,fi}$	[kN]	0.75	1.875	0.75	1.875
	R120	$N_{Rk,p,fi}$	[kN]	0.6	1.5	0.6	1.5
Concrete cone failure							
Characteristic Resistance	R30-R90	N^0 Rk,c,fi	[kN]	0.86	2.76	0,.86	2.76
	R120	N^0 Rk,c,fi	[kN]	0.68	2.21	0.68	2.21
Edge distance							
R30 - R120		C _{cr} ,fi	[mm]	2 x h _{ef}			
In case of fire at	tack from mo	re than one s	side, the	minimum edge	e distance sha	II be ≥300mm.	
Spacing							
R30 - R120		Scr,fi	[mm]	4 x h _{ef}			
Pry-out failure							
R30 - R120		k 8	[-]	1.0			
The anchorage of value.	•	e increased f		•	east 30 mm co	mpared to the	given

¹⁾ Not for application in prestressed hollow core slabs

British Board of Agrément, 1st Floor Building 3, Hatters Lane, Croxley Park Watford **WD18 8YG**