

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6551 of 20/12/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	TSM high performance, TSM high performance A4, TSM high performance HCR
Product family to which the construction product belongs:	Mechanical fasteners for use in concrete
Manufacturer:	TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg DEUTSCHLAND
Manufacturing plant(s):	TOGE Dübel GmbH & Co. KG
This UK Technical Assessment contains:	23 pages including 3 Annexes which form an integral part of this assessment.
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330232-00-0601 Mechanical fasteners for use in concrete

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such

1 Technical description of the product

The TOGE Concrete screw TSM high performance is an anchor in sizes 6, 8, 10, 12 and 14 mm manufactured from galvanized steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this UK Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex C 1 and C 2
(static and quasi-static loading)	
Characteristic resistance to shear load	See Annex C 1 and C 2
(static and quasi-static loading)	
Displacements (static and quasi-static loading)	See Annex C 7
Characteristic resistance and displacements for	See Annex C 3, C 4, C 5 and C 8
seismic performance categories C1 and C2	
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 6

3.3 Health, hygiene, and the environment (BWR 3)

Not relevant.

3.4 Safety and accessibility in use (BWR 4)

Not relevant.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

No performance assessed.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1 System of assessment and verification of constancy of performance

According to UKAD No. 330232-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU)) 305/2011 as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1 UKCA marking for the product/ system must contain the following information:

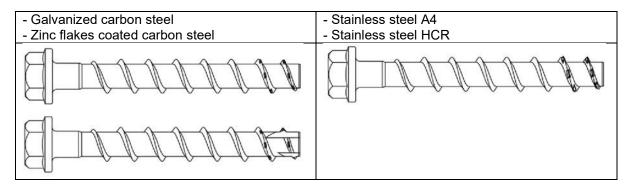
- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance (where applicable)
- UKTA number.

On behalf of the British Board of Agrément

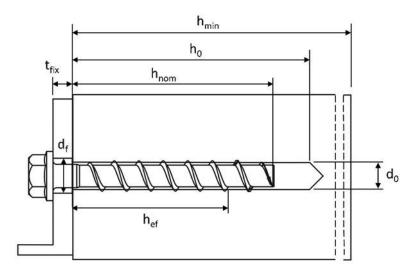
Date of Issue: 20 December 2022

Hardy Giesler Chief Executive Officer

Certificate amended on 23 May 2023 to reintroduce Tables 8, 9 and 10.


British Board of Agrément,

1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG


ANNEX A1 Product in installed condition

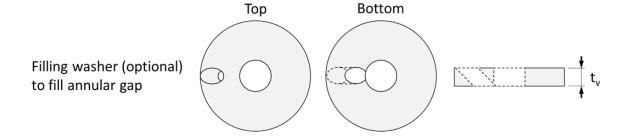
This annex applies to the product described in the main body of the UK Technical Assessment.

TOGE concrete screw TSM high performance

e.g. TOGE concrete screw, zinc flakes coated, with hexagon head and fixture

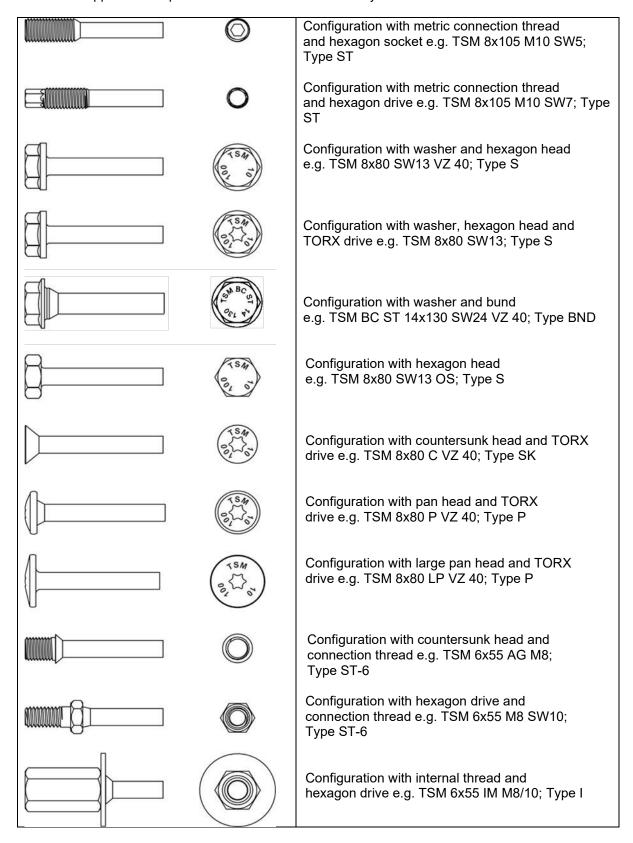
d₀ = nominal drill hole diameter

 t_{fix} = thickness of fixture


d_f = clearance hole diameter

h_{min} = minimum thickness of member

h_{nom} = nominal embedment depth


 h_0 = drill hole depth

h_{ef} = effective embedment depth

ANNEX A2 Screw types

This annex applies to the product described in the main body of the UK Technical Assessment.

ANNEX A3 Material, Dimensions and markings

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 1: Material

Part	Product name	Material
all types	TSM high performance	- Steel BS EN 10263-4:2017 galvanized acc. to BS EN ISO 4042:2018 - Zinc flake coating according to BS EN ISO 10683:2018 (≥5µm) - Zinc flake coating according to BS EN ISO 10683:2018 special coating TOGE KORR (≥20µm)
	TSM high performance A4	1.4401; 1.4404; 1.4571; 1.4578
	TSM high performance HCR	1.4529

		Nominal chara	Nominal characteristic steel						
Part	Product name	Yield strength f _{yk} [N.mm ⁻²]	Ultimate strength f _{uk} [N.mm ⁻²]	Rupture elongation A₅ [%]					
	TSM high performance								
all	TSM high performance A4	560	700	≤ 8					
types	TSM high performance HCR								

Table 1: Dimensions

Anchor size						8			10			12			14	
Nominal embedment h _{nom}			1	2	1	2	3	1	2	3	1	2	3	1	2	3
depth		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Screw length	≤L	[mm]								500						
Core diameter	d_K	[mm]	5	,1		7,1			9,1			11,1			13,1	
Thread outer diameter	ds	[mm]	7	,5		10,6			12,6			14,6	6		16,6	
Thickness of filling washer	t _v	[mm]		-		5			5			5			5	

Marking:

TSM high performance

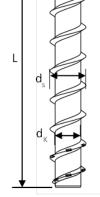
Screw type: TSM Screw size: 10 Screw length: 100

TSM high performance A4

Screw type: TSM Screw size: 10 Screw length: 100 Material: A4

TSM high performance BC ST

Screw type: TSM BC ST


Screw size: 10 Screw length: 100

TSM high performance HCR

Screw type: TSM Screw size: 10 Screw length: 100 Material: HCR

ANNEX B1 Specification of Intended use

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 3: Anchorages subject to

TSM concrete screw size		6		8	8			10			12			14	
Nominal embedment depth		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
[mm]		40	55	45	55	65	55	75	85	65	85	100	65	85	115
Static and quasi-static loads	•	A 11 -	All sizes and all embedment depths												
Fire exposure		All S	sizes a	and ai	ı emb	eame	nt aep	วเทร							
C1 category - seismic perfor	mance	ok	ok				ok								
C2 category – seismic (A4 and HCR: no performance assessed)		1)		1)		ok	1)	1)	ok	1)		ok	1)		ok

no performance assessed

Base materials:

- Compacted reinforced and unreinforced concrete without fibres according to BS EN 206:2013
- Strength classes C20/25 to C50/60 according to BS EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4.
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR.
 Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

ANNEX B2 Specification of Intended use - continuation

This annex applies to the product described in the main body of the UK Technical Assessment.

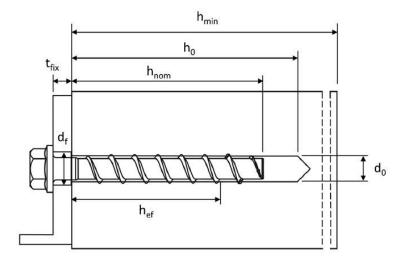
Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

- Anchorages are designed according to BS EN 1992-4:2018
- The design for shear load according to BS EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- · Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B6 for sizes 6-14, all embedment depths except for seismic application.
- · Cleaning of borehole is not necessary, if using a hollow drill.


ANNEX B3 Installation parameters

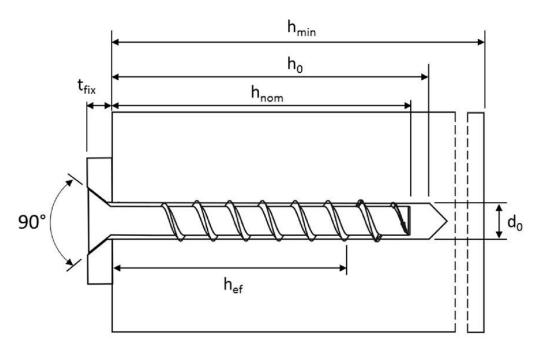
This annex applies to the product described in the main body of the UK Technical Assessment.

Table 4: Installation parameters

TSM concrete screw size			6		8			10				
Nominal embedment depth		h _{nom}	h _{nom1} h _{nom2}		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment depth		[mm]	40	55	45	55	65	55	75	85		
Nominal drill hole diameter	d_0	[mm]	(3		8			10			
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,	40		8,45			10,45			
Drill hole depth	h ₀ ≥	[mm]	45	60	55	65	75	65	85	95		
Clearance hole diameter	d _f ≤	[mm]	8	3		12			14			
Installation torque (version with connection thread)	T _{inst}	[Nm]	1	0		20			40			
Torque impact screwdriver		[Nm]	Maxii	num to	rque acc	cording	to manı	ufacture	r's instr	uctions		
Torque impact screwariver		[י אייין	16	60		300		400				

TSM concrete screw size				12			14			
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
		[mm]	65	85	100	75	100	115		
Nominal drill hole diameter	d_0	[mm]		12			14			
Cutting diameter of drill bit	d _{cut} ≤	[mm]		12,5	0	14,50				
Drill hole depth	h₀ ≥	[mm]	75	95	110	85	110	125		
Clearance hole diameter	d _f ≤	[mm]		16		18				
Installation torque (version with connection thread)	T _{inst}	[Nm]		60		80				
Torque impact corowdriver		[Nm]	Maxir	num torq	ue according	to mar	nufacturer's ins	tructions		
Torque impact screwdriver		נואוון		650		650				

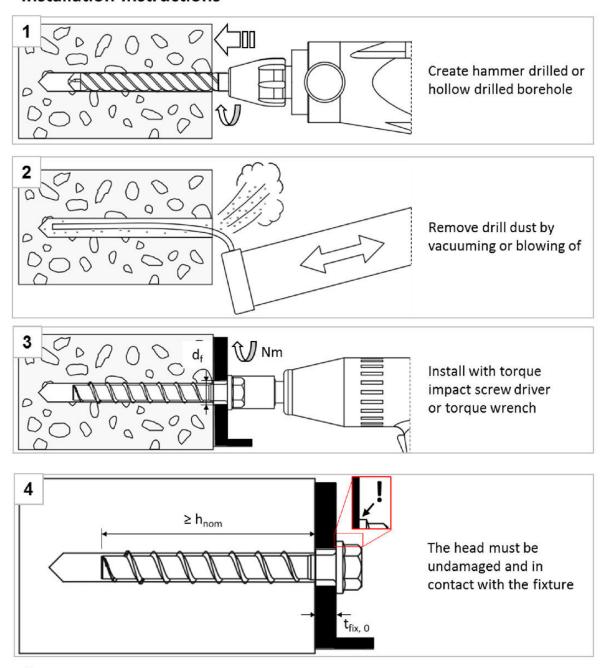
ANNEX B4 Intended use


Minimum thickness of member, minimum edge distance and minimum spacing

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 5: Minimum thickness of member, minimum edge distance and minimum spacing

TSM concrete sc	rew siz	е	(6		8		10			
Nominal embedme	ent	h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
depth		[mm]	40	55	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]	10	00	10	00	120	100	130		
Minimum edge distance	C _{min}	[mm]	4	0	40	5	0		5	0	
Minimum spacing	Smin	[mm]	4	0	40	5	0		5	0	

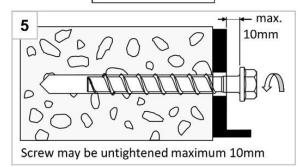

TSM concrete sc	rew siz	е		12		14				
Nominal embedment		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
depth		[mm]	65	85	100	75	100 115			
Minimum thickness of member	h _{min}	[mm]	120	130	150	130	150	170		
Minimum edge distance	C _{min}	[mm]	50		70	50	70			
Minimum spacing	Smin	[mm]	50		70	50	-	70		

ANNEX B5 Intended use, Installation instructions

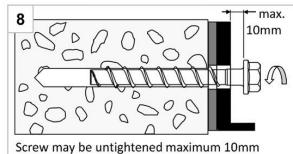
This annex applies to the product described in the main body of the UK Technical Assessment.

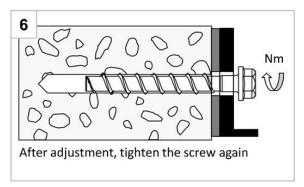
Installation Instructions

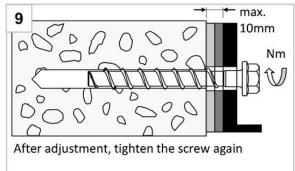
Note:

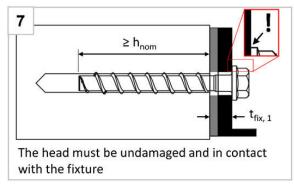

Cleaning of borehole is not necessary when using a hollow drill

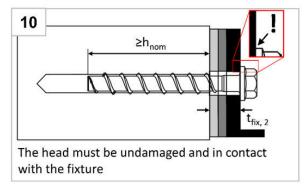
ANNEX B6 Intended use, Installation instructions - Adjustment


This annex applies to the product described in the main body of the UK Technical Assessment.

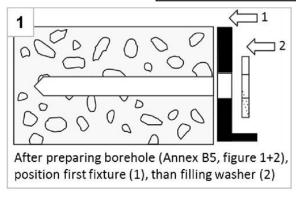

Installation Instructions – Adjustment

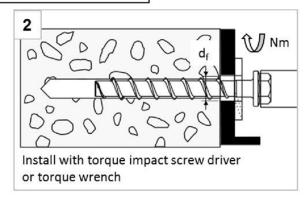

1. Adjustment

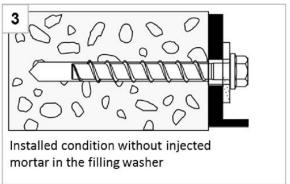


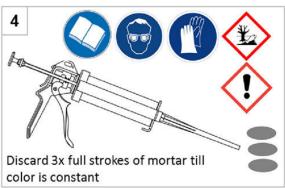

2. Adjustment

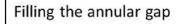
Note:

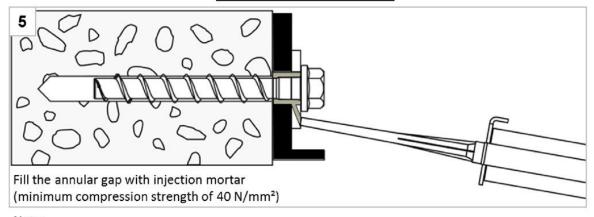

The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .


ANNEX B7 Intended use, Installation instructions - Filling annular gap


This annex applies to the product described in the main body of the UK Technical Assessment.


Installation Instructions - Filling annular gap


Positioning of fixture and filling washer



Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C5 - C7.

ANNEX C1 Performances, Characteristic values for static and quasi-static loading, sizes 6-10

This annex applies to the product described in the main body of the UK Technical Assessment.

able 2: Charac	teri	stic values fo	r static	and qu	ıasi-sta	tic loa	ding, s	izes 6-	-10			
TSM concrete	e sc	rew size			6			8			10	
NI				h _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embe	eam	ent depth		[mm]	40	55	45	55	65	55	75	85
Steel failure 1	for t	ension and s	hear lo	ading								
Characteristic	ten	sion load	$N_{Rk,s}$	[kN]	14,	,0		27,0			45,0	
Partial factor			γ Ms,N	[-]				1,	,5			
Characteristic	she	ar load	$V^0_{\text{Rk,s}}$	[kN]	7,0	0	13	3,5	17,0	22,5	34	,0
Partial factor			γ Ms,V	[-]				1,	25			
Ductility factor			k ₇	[-]	10	•			,8	ı		
Characteristic		nding load	M ⁰ Rk,s	[Nm]	10,	,9		26,0			56,0	
Pull-out failu		Т						Ī	T	ı		
Characteristic tension load		cracked	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0	≥ N ⁰	Rk,c ¹⁾
C20/25		uncracked	$N_{Rk,p}$	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0
 		C25/30 C30/37	_						12			
Increasing factor for N _{Rk,r})	C30/37 C40/50	Ψc	[-]					<u>22</u> 41			
		C50/60							58			
Concrete fail	ure:	Splitting fail	ure, coi	ncrete	cone fa	ilure a	nd pry	-out fa	ilure			
Effective emb	edm	ent depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68
la facility	cr	acked	k _{cr}	[-]				7	,7			
k-factor	uı	ncracked	k _{ucr}	[-]				11	1,0			
Concrete	sp	pacing	S _{cr,N}	[mm]				3 x	h _{ef}			
cone failure	е	dge distance	C _{cr,N}	[mm]				1,5	x h _{ef}			
	re	esistance	$N^0_{Rk,sp}$	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	26,0
Splitting failure	s	pacing	S _{cr,Sp}	[mm]	120	16 0	120	140	150	140	180	210
	е	dge distance	C _{cr} ,Sp	[mm]	60	80	60	70	75	70	90	105
Factor for pry-	out	failure	k 8	[-]			1	,0			2,	,0
Installation fac	ctor		γinst	[-]				1	,0			
Concrete edg	je fa	ailure										
Effective lengt	th in	concrete	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68
Nominal outer screw	dia	meter of	d _{nom}	[mm]	6			8			10	

¹⁾ N⁰_{Rk,c} according to BS EN 1992-4:2018

ANNEX C2 Performances, Characteristic values for static and quasi-static loading, sizes 12-14

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 7: Characteristic values for static and quasi-static loading, sizes 12-14

TSM concrete screw size		12		14			
Naminal ambadmant danth	h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	[mm]	65	85	100	75	100	115

Steel fail	ure for	tensior	and sh	ear loading				
Characteristic tension load	$N_{Rk,s}$	[kN]	67,0 94,0					
Partial factor	үм _{s,N} [-] 1,5							
Characteristic shear load	$V^0_{Rk,s}$	[kN]	33,5	42,0	56,0			
Partial factor	γ Ms,V	[-]	1,25					
Ductility factor	k ₇	[-]	0,8					
Characteristic bending load	M ⁰ Rk,s	[Nm]	m] 113,0 185,0					

Pull-out failure									
Characteristic	cracked	$N_{Rk,p}$	[kN]	12,0	> N(0 1)				
tension load C20/25	uncracked	$N_{Rk,p}$	[kN]	16,0	≥ N ⁰ Rk,c ¹⁾				
	C25/30		r 1	1,12					
Increasing	C30/37	NII .		1,22					
factor for N _{Rk,p}	C40/50	Ψ _c	[-]		1,41				
	C50/60]		1,58					

Concrete failu	re: Splitting failu	re, conc	rete co	ne failu	ire and	pry-out	t failure)					
Effective embe	dment depth	h _{ef}	[mm]	50	67	80	58	79	92				
k-factor	cracked k ₁ = k _{cr} [-]							7,7					
K-Iacioi	uncracked	$k_1 = k_{ucr}$	[-]			11	,0						
Concrete	spacing	S _{cr,N}	[mm]	[mm] 3 x h _{ef}									
cone failure	edge distance							34,5 4 240 2					
	resistance	N^0 Rk,sp	[kN]	16,0	27,0	35,0	21,5	34,5	43,5				
Splitting failure	spacing	S cr,Sp	[mm]	150	210	240	180	240	280				
lallure	edge distance	C _{cr} ,Sp	[mm]	75	105	120	90	120	140				
Factor for pry-	out failure	k 8	k ₈ [-] 1,0 2,0 1,0 2,0				,0						
Installation fac	tor	γ _{inst} [-] 1,0											

Concrete edge failure								
Effective length in concrete	I _f = h _{ef}	[mm]	50	67	80	58	79	92
Nominal outer diameter of screw	d _{nom}	[mm]		12			14	

N⁰_{Rk,c} according to BS EN 1992-4:2018

Page 16 of 23 of UK Technical Assessment UKTA-0836-22/6551

1)

ANNEX C3 Performances, Seismic category C1 - Characteristic load values

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 3: Seismic category C1 – Characteristic load values (type S, type SK, type ST, type ST-6¹⁾, type P and type I¹⁾)

		,	5	8	ı	0	12	14						
	h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom3}	h _{nom3}						
	[mm]	40	55	65	55	85	100	115						
(version	type S	, type S	K, type	ST, typ	e ST-6 ¹⁾	, type P	, type I ¹⁾)							
N _{Rk,s,eq}	[kN]	14	ŀ,0	27,0	45	5,0	67,0	94,0						
γ Ms,eq	[-]				1,5									
$V_{Rk,s,eq}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4						
γ Ms,eq	[-]				1,25	5								
α _{gap}	[-]				1,0									
Vithout filling of the annular gap $^{3)}$ α_{gap} [-]						[-] 0,5								
Pull-out failure (version type S, type SK, type ST, type ST-6¹), type P, type I¹))														
N _{Rk,p,eq}	[kN]	2,0	4,0	12,0	9,0		≥ N ⁰ Rk,c	4)						
ype SK,	type S	T, type	ST-6 ¹⁾ ,	type P,	type I ¹⁾)									
h _{ef}	[mm]	31	44	52	43	68	80	92						
Ccr,N	[mm]				1,5 x	h _{ef}								
Scr,N	[mm]				3 x h	lef								
γinst	[-]				1,0									
, type S	K, type	ST, typ	pe P)											
k ₈	[-]		1	,0		2,0								
Concrete edge failure (version type S, type SK, type ST, type P)														
I _f = h _{ef}	[mm]	31	44	52	43	68	80	92						
d _{nom}	[mm]	6	6	8	10	10	12	14						
	NRk,s,eq γMs,eq VRk,s,eq γMs,eq αgap αgap NRk,p,eq γms,eq αgap κ, type S NRk,p,eq γms γms γms γms γms γms γms γm	[mm] (version type S NRk,s,eq [kN] YMs,eq [-] VRk,s,eq [kN] YMs,eq [-] αgap [-] αgap [-] αype ST, type NRk,p,eq [kN] ype SK, type S hef [mm] αcr,N [mm] γinst [-] type SK, type S kg [-] sype SK, type S lf = hef [mm]	[mm] 40 (version type S, type S NRk,s,eq [kN] 14 YMs,eq [-] VRk,s,eq [kN] 4,7 YMs,eq [-] αgap [-] αgap [-] α, type ST, type ST-61, NRk,p,eq [kN] 2,0 ype SK, type ST, type hef [mm] 31 Cor,N [mm] Sor,N [mm] Yinst [-] s, type SK, type ST, type k8 [-] sype SK, type ST, type lf = hef [mm] 31	[mm] 40 55 (version type S, type SK, type NRk,s,eq [kN] 14,0 YMs,eq [-] VRk,s,eq [kN] 4,7 5,5 YMs,eq [-] αgap [-] αgap [-] αgap [-] αgap [-] αype ST, type ST-6¹¹, type P, NRk,p,eq [kN] 2,0 4,0 ype SK, type ST, type ST-6¹¹, hef [mm] 31 44 αccr,N [mm] Scr,N [mm] Yinst [-] s, type SK, type ST, type P) k8 [-] 1 sype SK, type ST, type P) If = hef [mm] 31 44	[mm] 40 55 65 (version type S, type SK, type ST, type NRk,s,eq [kN] 14,0 27,0 γMs,eq [-]	[mm] 40 55 65 55 (version type S, type SK, type ST, type ST-6¹) N _{Rk,s,eq} [kN] 14,0 27,0 45 V _{Ms,eq} [-] 1,5 V _{Rk,s,eq} [kN] 4,7 5,5 8,5 13,5 Y _{Ms,eq} [-] 1,0 α _{gap} [-] 0,5 (x type ST, type ST-6¹), type P, type I¹)) N _{Rk,p,eq} [kN] 2,0 4,0 12,0 9,0 ype SK, type ST, type ST-6¹), type P, type I¹) h _{ef} [mm] 31 44 52 43 C _{cr,N} [mm] 1,5 x S _{cr,N} [mm] 3 x h Y _{inst} [-] 1,0 (x type SK, type ST, type P) k ₈ [-] 1,0 (x type SK, type ST, type P) k ₈ [-] 1,0	[mm] 40 55 65 55 85 85	$[mm] 40 55 65 55 85 100$ $(version type S, type SK, type ST, type ST-6^1), type P, type I^1)$ $N_{Rk,s,eq} [kN] 14,0 27,0 45,0 67,0$ $V_{Ms,eq} [-] 1,5$ $V_{Rk,s,eq} [kN] 4,7 5,5 8,5 13,5 15,3 21,0$ $V_{Ms,eq} [-] 1,0$ $\alpha_{gap} [-] 0,5$ $(x, type ST, type ST-6^1), type P, type I^1)$ $N_{Rk,p,eq} [kN] 2,0 4,0 12,0 9,0 \geq N^0_{Rk,e}$ $(x, type SK, type ST, type ST-6^1), type P, type I^1)$ $N_{Rk,p,eq} [mm] 31 44 52 43 68 80$ $N_{Gr,N} [mm] 1,5 \times h_{ef}$ $N_{Gr,N} [mm] 1,0$						

¹⁾ only tension load

²⁾ With filling of the annular gap according to annex B7, figure 5

³⁾ Without filling of the annular gap according to annex B5

⁴⁾ N⁰_{Rk,c} according to EN 1992-4:2018

ANNEX C4 Performances, Seismic category C2 – Characteristic load values with filled annular gap

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 4: Seismic category C2 ¹⁾ – Characteristic load values with filled annular gap according to annex B7, figure 5 (type S, type ST, type P)

TSM concrete screw size			8	10	12	14			
Naminal ambadment denth		h _{nom}		hn	om3				
Nominal embedment depth		[mm]	65	85	100	115			
Steel failure for tension and shear load	(version ty	pe S, ty	pe ST, typ	e P)					
Characteristic load	$N_{Rk,s,eq}$	[kN]	27,0	45,0	67,0	94,0			
Partial factor	Y Ms,eq	[-]		1	,5				
Characteristic load	$V_{Rk,s,eq}$	[kN]	9,9	18,5	31,6	40,7			
Partial factor	Y Ms,eq	[-]		1,	25				
With filling of the annular gap	α_{gap}	[-]		1	,0				
Pull-out failure (version type S, type S1	r, type P)								
Characteristic load in cracked concrete	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5			
Concrete cone failure (version type S, t	ype ST, ty	pe P)							
Effective embedment depth	h _{ef}	[mm]	52	68	80	92			
Edge distance	C _{cr} ,N	[mm]		1,5	x h _{ef}				
Spacing	Scr,N	[mm]		3 x	h _{ef}				
Installation safety factor	γinst	[-]		1	,0				
Concrete pry-out failure (version type S	s, type ST,	type P)	ı						
Factor for pry-out failure	k ₈	[-]	1,0		2,0				
Concrete edge failure (version type S, type ST, type P)									
Effective length in concrete	I _f = h _{ef}	[mm]	52	68	80	92			
Nominal outer diameter of screw	d _{nom}	[mm]	8	10	12	14			

¹⁾ A4 and HCR not suitable

ANNEX C5 Performances,

Seismic category C2 – Characteristic load values without filled annular gap.

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 5: Seismic category C2 ¹⁾ – Characteristic load values without filled annular gap according to annex B5 (type S, type ST, type P)

TSM concrete screw size			8	10	12	14		
Non-in-Landa de la de		h _{nom}		hno	om3			
Nominal embedment depth		[mm]	65	85	100	115		
Steel failure for tension and shear loa	nd (version	type S,	type ST, ty	pe P)				
Characteristic load	$N_{Rk,s,eq}$	[kN]	27,0	45,0	67,0	94,0		
Partial factor	Y Ms,eq	[-]		1,	,5			
Characteristic load	$V_{Rk,s,eq}$	[kN]	10,3	21,9	24,4	23,3		
Partial factor	Y Ms,eq	[-]		1,:	25			
Without filling of the annular gap	α _{gap}	[-]		0	,5			
Pull-out failure (version type S, type	ST, type P)						
Characteristic load in cracked concrete	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5		
Steel failure for tension and shear loa	nd (version	type SK	()					
Characteristic load	$N_{Rk,s,eq}$	[kN]	27,0	45,0				
Partial factor	Y Ms,eq	[-]	1	,5	<u></u>			
Characteristic load	$V_{Rk,s,eq}$	[kN]	3,6	13,7	no performano assessed			
Partial factor	Y Ms,eq	[-]	1,:	25	a330	.33Cu		
Without filling of the annular gap	$lpha_{gap}$	[-]	0	,5				
Pull-out failure (version type SK)								
Characteristic load in cracked concrete	$N_{Rk,p,eq}$	[kN]	2,4	5,4		ormance essed		
Concrete cone failure (version type \$	S, type SK,	type ST	, type P)					
Effective embedment depth	h _{ef}	[mm]	52	68	80	92		
Edge distance	C _{cr} ,N	[mm]		1,5	x h _{ef}			
Spacing	Scr,N	[mm]		3 x	h _{ef}			
Installation safety factor	γinst	[-]		1,	,0			
Concrete pry-out failure (version type	S, type SI	K, type \$	ST, type P)					
Factor for pry-out failure	k ₈	[-]	1,0		2,0			
Concrete edge failure (version type \$	S, type SK,	type ST	, type P)					
Effective length in concrete	$I_f = h_{ef}$	[mm]	52	68	80	92		
Nominal outer diameter of screw	d_{nom}	[mm]	8	10	12	14		

¹⁾ A4 and HCR not suitable

ANNEX C6 Performances, Fire exposure – characteristic values of resistance

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 11: Fire exposure – characteristic values of resistance

TSM concret	e scre	w size		•	3		8			10			12			14	
Name in all and		.4 -141-	h _{nom}	1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominal emb	eamen	it depth	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Steel failure	for ter	sion and	shear	load				<u></u>								<u></u>	
	R30	N _{Rk,s,fi30}	[kN]	0	,9		2,4		4,4			7,3				10,3	
	R60	N _{Rk,s,fi60}	[kN]	0	,8	1,7			3,3			5,8			8,2		
	R90	$N_{\text{Rk,s,fi90}}$	[kN]	0	,6		1,1			2,3			4,2			5,9	
	R120	- ' '	[kN]		,4		0,7			1,7			3,4			4,8	
	R30	V _{Rk,s,fi30}	[kN]		,9		2,4			4,4			7,3			10,3	
characteristic	R60	$V_{Rk,s,fi60}$	[kN]		,8		1,7			3,3			5,8				
Resistance	R90	V _{Rk,s,fi90}	[kN]		,6		1,1			2,3			4,2		3,8 6,0		
	R120		[kN]		,4		0,7			1,7			3,4				
	R30	M ⁰ _{Rk,s,fi30}	[Nm]		,7		2,4			5,9			12,3	}		_	
	R60	M ⁰ Rk,s,fi60	[Nm]		<u>,6</u>		1,8			4,5			9,7				
	R90	M ⁰ Rk,s,fi90	[Nm]		,5		1,2			3,0			7,0		11,6 9,4		
	R120	M ⁰ Rk,s,fi120	[Nm]	0	,3		0,9			2,3			5,7				
Pull-out failu	re									ı.						1	
Characteristic Resistance	R30- R90	$N_{Rk,p,fi}$	[kN]	0,5	1,0	1,3	2,3	3,0	2,3	4,0	4,8	3,0	4,7	6,2	3,8	6,0	7,6
Nesisiance	R120	$N_{Rk,p,fi}$	[kN]	0,4	0,8	1,0	1,8	2,4	1,8	3,2	3,9	2,4	3,8	4,9	3,0	4,8	6,1
Concrete cor	ne fail	ure															
Characteristic	R30-	N ⁰ Rk,c,fi	[kN]	0,9	2,2	1,2	2,1	3,4	2,1	4,8	6,6	3,0	6,3	9,9	4,4	9,6	14,0
Resistance	R120		[kN]	0,7	1,8	1,0	1,7	2,7	1,7	3,8	5,3	2,4	5,1	7,9	3,5	7,6	11,2
		TV FXK,C,II	[14,14]	0,1	1,0	1,0	','	2,1	','	0,0	0,0	∠,⊤	0,1	7,0	0,0	7,0	11,2
Edge distance	e																
R30 bis R120		C _{cr,fi}	[mm]							2	2 x h _e	f					
In case of fire	attack	from mor	e than	one	side,	the n	ninim	um e	edge o	distar	nce sl	nall b	e ≥30	00mm.			
Spacing				1													
R30 bis R120		S _{cr,fi}	[mm]							4	k x he	f					
Pry-out failur	re														1	T	
R30 bis R120		k 8	[-]		_	1	,0			2	,0	1,0	2	2,0	1,0	2	,0
The anchorag	e dept	th has to b	e incre	easec	for v	vet c	oncre	ete by	at le	ast 3	0 mn	com	pare	d to th	e give	en valu	ie.

ANNEX C7 Performances, Displacements under static and quasi-static loads

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 12: Displacements under static and quasi-static tension load

TSM concre	TSM concrete screw size						8		10			
Nominal em	Nominal embedment depth h _{nom}				h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nonlinai em	bedillellt deptil		[mm]	40	55	45	55	65	55	75	85	
	tension load	Ν	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	
Cracked concrete	dianlacement	δ_{N0}	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	
001101010	displacement	δ_{N^∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
	tension load	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	
Uncracked concrete displacement	dianlacement	δ_{N0}	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	
	δ_{N^∞}	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2		

TSM concre	ete screw size				12		14																			
Naminal am	bodmont donth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}																	
Nominal em	bedment depth		[mm]	65	85	100	75	100	115																	
	tension load	Ν	[kN]	5,7	9,4	12,3	7,6	12,0	15,1																	
Cracked concrete	dianlacement	δνο	[mm]	0,9	0,5	1,0	0,5	0,8	0,7																	
001101010	displacement	δ_{N^∞}	[mm]	1,0	1,2	1,2	0,9	1,2	1,0																	
	tension load	N	[kN]	7,6	13,2	17,2	10,6	16,9	21,2																	
Uncracked	dianlacement	δνο	[mm]	1,0	1,1	1,2	0,9	1,2	0,8																	
concrete disp	displacement	displacement	displacement	displacement	displacement	displacement	displacement	displacement	displacement	displacement	I displacement F	I displacement ⊢	δ _{N∞}	[mm]	1,0	1,2	1,2	0,9	1,2	1,0						

Table 13: Displacements under static and quasi-static shear load

TSM concre	TSM concrete screw size						8		10		
Nominal embedment		r	1 _{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth			mm]	40	55	45	55	65	55	75	85
Cracked	shear load	٧	[kN]	3,3			8,6			16,2	
and		δν0	[mm]	1,	55	2,7			2,7		
uncracked concrete	alopiacement		[mm]	3,1			4,1		4,3		

TSM concrete screw size					12		14		
Nominal embedment depth		h _{nom}		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
		[r	mm]	65 85		100	75	100	115
Cracked and uncracked concrete	shear load	٧	[kN]	20,0			30,5		
		δν0	[mm]	4,0			3,1		
	displacement	δ∨∞	[mm]	6,0			4,7		

ANNEX C8 Performances, Displacements under seismic loads

This annex applies to the product described in the main body of the UK Technical Assessment.

Table 6: Seismic category C2 ¹⁾ – Displacements with filled annular gap according to annex B7, figure 5 (type S, type ST, type P)

TSM concrete screw size	8	10	12	14				
Nominal embedment depth		h _{nom}	h _{nom3}					
		[mm]	65	85	100	115		
Displacements under tension loads (version type S, type ST, type P)								
Displacement DLS	$\delta_{N,eq(DLS)}$	[mm]	0,66	0,32	0,57	1,16		
Displacement ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	1,74	1,36	2,36	4,39		
Displacements under shear loads (version type S, type ST, type P with hole clearance)								
Displacement DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	1,68	2,91	1,88	2,42		
Displacement ULS δ _{V,eq(U}		[mm]	5,19	6,72	5,37	9,27		

Table 7: Seismic category C2 ¹⁾ – Displacements **without filled annular gap according to annex B5** (only version type S, type SK, type ST, type P)

TSM concrete screw size	8	10	12	14				
Nominal embedment depth			h _{nom3}					
			65	85	100	115		
Displacements under tension loads (version type	S, type	ST, type P)					
Displacement DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,66	0,32	0,57	1,16		
Displacement ULS	δ _{N,eq(ULS)}	[mm]	1,74	1,36	2,36	4,39		
Displacements under tension loads (version type	SK)						
Displacement DLS	$\delta_{N,\text{eq}(\text{DLS})}$	[mm]	0,66	0,32	No performance assessed			
Displacement ULS	$\delta_{N,\text{eq(ULS)}}$	[mm]	1,74	1,36				
Displacements under shear loads (ve	ersion type S	, type S	T, type P with	hole clearance	ce)			
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	4,21	4,71	4,42	5,60		
Displacement ULS	δ _{V,eq(ULS)}	[mm]	7,13	8,83	6,95	12,63		
Displacements under shear loads (ve	rsion type S	K with h	ole clearance)					
Displacement DLS	$\delta_{V,eq(DLS)}$	[mm]	2,51	2,98	No performance assessed			
Displacement ULS	δ _{V,eq(ULS)}	[mm]	7,76	6,25				
1) A 4 1110D ((4.11)								

¹⁾ A4 and HCR not suitable

British Board of Agrément, 1st Floor Building 3,

1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG