

TOGE TSM Multiground

Female threaded screw for various substrates

Demountable

If required, the TOGE TSM Multiground can be quickly and easily dismounted.

High load values

The special thread geometry ensures secure hold and high loads in concrete.

Small edge distances

Small edge distances and spacing allow particularly close-edge and closely spaced installation.

Easy Installation

Easy, fast and safe installation with a impact screwdriver. This makes overhead work in particular much easier.

Flush with surface

The flush surface installation results in a clean installation appearance without any interfering elements.

Internal thread

The practical internal thread enables use for a wide range of applications.

Approval

Approval

European technical assessment ETA-23/0542.

Base Material

Approved for concrete strenght classes from C20/25 to C50/60.

Cracked and non-cracked concrete.

Suitable for masonry, aerated concrete and wood.

Material

Steel, zinc-plated.

for anchoring in cracked and uncrakced concrete For multiple use in concrete for non-structural applications TSM Multiground 8/10/12

Headshapes & Materials

Female thread M6, M8, M10

Steel,

zinc-plated

 \checkmark

Steel, zinc

flake-coated

Application Examples

Fastening of cable ducts

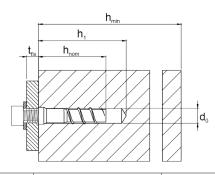
Detail: TSM Multiground with threaded rod and pipe clamp

Fastening of ceiling suspension of any kind

Stainless steel

A4

Product Overview


Steel - zinc-plated

Version with female thread

Size	Ø Female thread
8	M6
10	M8
12	M10

ltem nr.	Designation	Depth of drill hole h _i	Embedment depth h _{nom}	Length female thread L _{cew}	Packing Unit
345 008 040	TSM M 8x40 IM6x10 VZ50	50mm	40mm	10 mm	100
345 010 040	TSM M 10x40 IM8x10 VZ55	50mm	40mm	10 mm	100
345 012 040	TSM M 12x40 IM10x10 VZ60	50mm	40mm	10 mm	100

Technical characteristics

Multiple fastening without fire exposure, Steel

Screw size TSM M				TSM 8 M	TSM 10 M	TSM 12 M	
Nominal embedment depth	h _{nom}		[mm]	40	40	40	
Nominal diameter of drill bit	d _o		[mm]	8	10	12	
Depth of drill hole	h, mi	n	[mm]	50	50	50	
Effective anchorage depth	h _{ef}		[mm]	31	31	30	
Diameter of clearance hole in the fixture	d _r ma	ах	[mm]	7	9	12	
Minimum edge distance	C _{min}		[mm]	40	40	40	
Minimum spacing	S _{min}		[mm]	30	40	40	
Minimum base material thickness	h _{min}		[mm]	80	80	80	
Installation torque (for metrical thread)	T _{inst}		[Nm]	4	8	15	
Minimum screw-in depth metrical thread		[mm]	8	8	8		
Maximum torque (with impact screwdriver)		[Nm]	180	180	180		
Permissible load for metrical thread of tension class 4.8							
Permissible tension load in cracked concrete ^{1) 3)}	N _{per}	4.8	[kN]	2,6	2,8	1,8	
Permissible shear load in cracked concrete ^{2] 3]}	V _{per}	4.8	[kN]	2,3	2,8	2,3	
Persmissible tension load in uncracked concrete $^{1\!\!\!\!13\!\!\!3}$	N _{per}	4.8	[kN]	3,1	3,8	2,2	
Persmissible shear load in uncracked concrete ^{2) 3)}	V _{per}	4.8	[kN]	2,3	4,0	3,2	
Persmissible bending moment ^{2) 3)}	M _{per}	4.8	[kN]	2,9	7,1	13,7	
Permissible load for metrical thread of tension class 5.8							
Permissible tension load in cracked concrete ^{1) 3)}	N _{per}	5.8	[kN]	2,6	2,8	1,8	
Permissible shear load in cracked concrete ^{2) 3)}	V _{per}	5.8	[kN]	2,8	2,8	2,3	
Persmissible tension load in uncracked concrete $^{1\!\!\!1\!3\!\!\!3}$	N _{per}	5.8	[kN]	3,1	3,8	2,2	
Persmissible shear load in uncracked concrete ^{2) 3)}	V _{per}	5.8	[kN]	2,9	4,0	3,2	
Persmissible bending moment ^{2) 3)}	M _{per}	5.8	[kN]	3,6	8,8	13,7	
Permissible load for metrical thread of tension class 8.8							
Permissible tension load in cracked concrete $^{1\!\!\!\!1\!\!\!3\!\!\!3}$	N _{zul}	8.8	[kN]	2,6	2,8	1,8	
Permissible shear load in cracked concrete $^{2)}$	V _{zul}	8.8	[kN]	2,8	2,8	2,3	
Persmissible tension load in uncracked concrete $^{\scriptscriptstyle [\!]3\!]}$	N _{zul}	8.8	[kN]	3,1	3,8	2,2	
Persmissible shear load in uncracked concrete $^{2 3 }$	V _{zul}	8.8	[kN]	3,4	4,0	3,2	
Persmissible bending moment ^{2) 3)}	M _{zul}	8.8	[kN]	5,0	8,8	13,7	

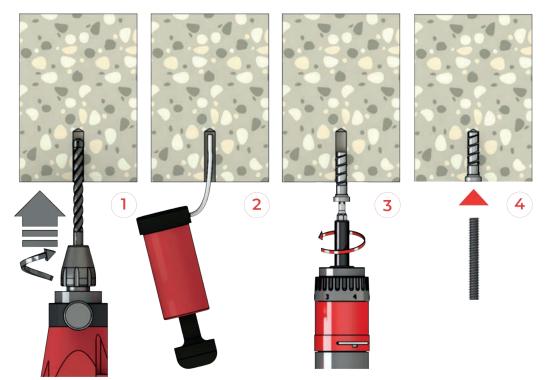
 11 For the determination of the approved loads, the partial safety factor from the approval γ M=1,5 was taken into account for material resistance and a partial safety factor of γ F=1,4 for load actions.

 $^{2)}$ For the determination of the approved loads, the partial safety factor from the approval γ M=1,25 was taken into account for material resistance and a partial safety factor of γ F=1,4 for load actions.

³⁾ These values apply without influence of the spacing and edge distances.

Technical characteristics

Multiple fastening under fire exposure, Steel


Screw size TSM M				TSM 8 M	TSM 10 M	TSM 12 M		
Nominal embedment depth		h _{nom}	[mm]	40 40		40		
Permissible load ur	nder tensile and shear use ($F_{per,fi} = N_{per}$	r,fi = V _{per,fi})	1) 2)			•		
Fire resistance cla	SS							
R 30	Approved load	F _{per,fi 30}	[kN]	0,9	0,9	0,8		
R 60		F _{perl,fi 60}	[kN]	0,9	0,9	0,8		
R 90		F _{per,fi 90}	[kN]	0,9	0,9	0,8		
R 120		F _{per,fi 120}	[kN]	0,7	0,7	0,7		
R 30		M _{per,fi 30}	[Nm]	0,63	1,81	4,28		
R 60		M _{per,fi 60}	[Nm]	0,49	1,36	3,12		
R 90		M _{per,fi 90}	[Nm]	0,34	0,91	1,97		
R 120		M _{per,fi 120}	[Nm]	0,27	0,68	1,39		
Edge distance								
R 30 to R 120	R 30 to R 120 C _{er,fi} [mm] 2 x h _{ef}							
The edge distance r	must be at least 300 mm, if the fire loa	ad attacks	from n	nore than one side	e.			
Spacing								
R 30 to R 120			[mm]	4 x h _{ef}				
Concrete pry-out fa	ilure							
R 30 to R 120		k	[-] 1,0					
In wet concrete, the	embedment depth must be increase	ed by at le	ast 30 r	nm.				

¹⁾ For the determination of the approved loads, the partial safety factor from the approval γM=1,0 was taken into account for material resistance and a partial safety factor of γF=1,0 for load actions.

²⁾ These values apply without influence of the spacing and edge distances.

Installation Instruction

- 1) Create drill hole with hammerdrill or hollow drill bit.
- 2) Thoroughly clean drill hole.
- 3) Screw in TOGE TSM Multiground with impact screwdriver or wrench.
- 4) Screw must be screwed in flush with the surface of the concrete. The attachment part is fastened with a standard metric screw or threaded rod. The tightening torque of the metric thread must be observed.